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Abstract

The genome encodes information for mRNA transcription, which then guides protein
translation. After post-transcriptional processing, the mature mRNA still contains
untranslated regions (UTRs) in its 5’ and 3’-ends. These UTRs have many regu-
latory elements crucial for gene expression. Studying UTRs is challenging due to
the high evolutionary rate of non-coding sequences, making sequence alignment dif-
ficult. This study aims to apply, fine-tune, and compare different DNA-language
models to predict motifs in the 3’UTR, with emphasis on the polyadenylation site
and related motifs. By implementing models like BPNet and DNABERT and em-
ploying fine-tuning techniques such as Low-Rank Adaptation (LoRA), we improved
predictive performance. Our results show that the fine-tuned SpeciesLM model
with LoRA achieved superior performance metrics, including lower validation and
test loss, higher Pearson correlation, and better AUROC scores. MoDISco analysis
further validated the model’s ability to identify key polyadenylation motifs, demon-
strating the potential of DNA language models in genomics research.
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1 Introduction

The genome carries the information from which mRNA can be transcribed. The mRNA
is then used as a framework to translate proteins [1]. However, the majority of the DNA
consists of non-coding sequences [1]. After transcription of the DNA, the introns, seg-
ments of non-coding sequences, are cleaved off in the processing of the pre-mRNA into
fully functional mRNA5. However, the 5’- and the 3’-ends of the finished mRNA still
consists of large, non-coding sequences. Despite not being translated, these untrans-
lated regions (UTR) have shown to carry a plethora of regulatory elements that play
a very important role in regulating the gene expression [2]. For this reason, the UTRs
has become a hot-topic to study in order to understand its functions. Unfortunately,
there are limitations in today’s methods to study the UTRs. Non-coding sequences are
more prone to evolve at a higher rate which makes today’s approach sequence alignment
challenging [1]. Even though the elements in the UTR involved in transcriptional and
post-transcriptional control should be well preserved, orientation, arrangement and dis-
tance between elements becomes an issue [1]. That is why this field has implemented
the use of DNA language models to tackle these obstacles without the need for sequence
alignment.

To know the exact sequence of the UTR also requires one to know the exact boundaries for
the 5’- and the 3’ UTR. Focusing on the 3’ end, The 3’ UTR ends with the polyadenylation
(poly(A)) site. In mature mRNA, a long chain of adenine bases is synthesized at the
poly(A) site named the poly(A) tail, whose purpose is to stabilize the mRNA strand and
protect it from degradation [3].

1.1 Aim of the Study

This study aims to determine where the 3’ UTR ends by using different machine learning
methods to predict poly(A) sites and polyadenylation elements. The aim is also to fine-
tune the language model to increase its prediction accuracy. The last objective is to
interpret the predictions made by the language model.

2 Polyadenylation

The poly(A) tail is a chain of adenine bases added in the processing stage of mRNA
maturation [3]. Along with a triphosphate capping of the 5’-end, the 3’-end recieves a
poly(A) tail by poly(A) polymerase in the nucleus. This poly(A) tail binds to specific
binding proteins to control the export the mRNA out of the nucleus into the cytoplasm,
also protect the strand from being degraded and also promote translation [4].

2.1 The Polyadenylation Elements

The requirements in forming a mature 3’-end can vary between species. The polyadeny-
lation is controlled by the poly(A) signal which in mammalian cells is defined by three
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elements in the 3’ UTR [3]. These are the poly(A) site which is usually represented by
the dinucleotide CA, a signaling element, usually a very conserved hexamer AAUAAA,
located between 10 and 30 nucleotides upstream of the polyadenylation site, and lastly
a less conserved U/GU-rich elements similarly about 10 to 30 nucleotides downstream of
the poly(A) site [3, 5, 6]. The downstream elements can exist one without the other or
together, with the GU-rich sequence mostly found closest to the poly(A) site [7]. Right
downstream of the poly(A) site is the actual cleavage site of the pre-mRNA where the
poly(A) addition will take place (Figure 1.A) [2]. The poly(A) process in yeast however,
looks different. It requires three elements for functional polyadenylation, one also being
the actual poly(A) site and the two other described in literature as the efficiency ele-
ment and the positioning element [3, 8]. Both of these elements are located upstream of
the poly(A) site, meaning polyadenylation in yeast does not depend on a downstream
sequence [9]. The positioning element is 10-30 nucleotides upstream from the poly(A)
sites, responsible for the actual positioning of poly(A) sites and usually consists of the
same hexamer as in mammals, namely AAUAAA. While more variants exist this motif
is generally very A-rich [2]. The efficiency element is located upstream of the positioning
element and enhances the polyadenylation process significantly. This element is usually
represented by UAUAUA but can be more repetitive. While there can exist an enhanc-
ing sequence element in mammals too, it is not crucial and therefore not very conserved
(Figure 1.B) [3]. The poly(A) site in yeast also differs from mammalian poly(A) sites, by
mostly consisting of a pyrimidine (i.e. C or U) and a short stretch of A [3, 9]. In many
cases, the poly(A) site is also flanked by U residues which might have a stimulating effect
in cleavage-site recognition [8].
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Figure 1 – Visualization of the mRNA 3’-end in mammalian cells (A) and
yeast cells (B) before polyadenylation. A) For functional polyadenylation in yeast,
the efficency element is crucial. The poly(A) site consists of a C or U followed by a short
stretch of A. B) Pre-mRNA in mammals. This process requiers a U/GU-rich sequence
downstream of the poly(A) site. An upstream sequence element can stimulate polyadeny-
lation, but is not crucial. Poly(A) site usually represented by CA. ORF=open reading
frame, EE=efficiency element, PE=positioning element.

2.2 The Polyadenylation Process

The polyadenylation process in mammalian cells is initiated by recognition of the poly(A)
site in the terminal end of the 3’UTR [5]. This is fulfilled when specific cleavage fac-
tors recognise the poly(A) signal and the U/GU-rich sequence element upstream and
downstream of the poly(A) site respectively. These cleavage factors, the cleavage and
polyadenylation specificity factor (CPSF) and the cleavage stimulation factor (CstF)
bind to the poly(A) signal (the positioning element) and the U/GU-rich element and
cleaves the strand by the cleavage site. Sequentially, the poly(A) polymerase will bind
to the newly cleaved 3’-end and synthesize a chain of 50 to 250 adenosine residues [5].
In yeast cells, the process is more complex but still follows the same steps: recognize
the poly(A) site, cleave the pre-mRNA and synthesize the poly(A) tail [9]. This is done
by several cleavage and polyadenylation factors working together [8]. Furthermore, the
actual cleavage can occur after every adenosine residue that makes up the poly(A) site
[8].

2.3 Sequence Element Variants and Alternate Poly(A) Signals

Over recent years, with the advancement in genomic and transcriptomic data analysis like
deep sequencing, and the availability of improved bioinformatic tools, studies have shown
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data that points to numerous element variants capable of promoting polyadenylation
and 3’-end processing [7, 5]. What also pushed the advancements was the emergence
of expressed sequence tags (ESTs), a method to sequence the 5’ and 3’ ends of single
stranded cDNAs [5]. Numerous ESTs databases were established by several groups to
investigate these variants [5]. Furthermore, the majority of eukaryotic genes have multiple
polyadenylation signals, indicating the existence of alternative polyadenylation (APA)
sites [7, 5]. This also explains that alternate splicing of pre-mRNA can result in APAs [7].
In one study by Guo et. al. [3], site-directed mutations was aimed to knock out elements
in genes to observe potential poly(A) activity. It showed that even though important
elements are knocked out, less effective elements demonstrated activity which means less
optimal poly(A) sites can be used in its place. This confirms the overall dynamics of
post-transcriptional regulation. All of these phenomena are crucial for cell-type specific
gene expressions [6].

The hexamer AAUAAA, while being the most efficient positioning element for the poly(A)
signal [5, 3], it is not the only canonical positioning element [7, 3]. Early studies pointed
to the appearance of AUUAAA as an alternate positioning element with 80% of the
efficiency as AAUAAA, and AGUAAA at 30% [7, 6]. In yeast cells, AAAAAA is also
over-represented [3]. More variants with statistical over-representation have been ob-
served but with lower capabilities [7].

In yeast, numerous efficiency element variants have also been observed [3]. Out of these
variants, the UAUAUA seems to have the greatest effect on 3’-end formation. However,
not all genes seems to have this element variant but use other, less effective element
variants like UUUAUA and UAUGUA [3]. Furthermore, genes in yeast carrying these
less effective variants have shown to together aggregate a strong signal [3].

The GU-rich downstream element in mammals can vary in few ways, from the most
common GUGU to UGUG, UCUG, UGUC and more [7]. The U-rich element can vary
in length but usually consist of at least three uracil residues [7]. See Table 1 and Table
2.

Table 1 – Most common element variants in mammals. The signaling element
in mammals, corresponding to the positioning element in yeast, is mostly represented by
the preserved sequence AAUAAA, since this is the most efficient element. CA marks the
poly(A) site in mammals. The downstream element consist of a GU-rich element followed
by a U-rich element, however, these do not need to be present together. The first row of
each element represent the most common element in its category [7, 10].

Signaling element Poly(A) site Downstream element
AAUAAA CA GUGU and/or UUU...
AUUAAA UGUG and/or UUU...
AGUAAA CUGU and/or UUU...
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Table 2 – Most common element variants in yeast. The efficiency element pro-
ducing the strongest signal is UAUAUA. The consensus for the most common positioning
element is, as in mammals, the hexamer AAUAAA. The poly(A) site is usually repre-
sented by a pyrimidine followed by a short stretch of A:s. Unlike polyadenylation in
mammals, yeast does not have use of a downstream element, but requires an efficiency
element upstream of the positioning element. The first row of each element represent the
most common element in its category [7, 3].

Efficiency element Positioning element Poly(A) site
UAUAUA AAUAAA C(A)N
UUUAUA AAAAAA U(A)N
UAUGUA UAUAAA

3 DNA Language Models

3.1 Baseline model - BPNet

BPNet is a convolutional neural network (CNN) designed to predict transcription factor
(TF) binding profiles from DNA sequences at base resolution[11]. Its applications are
broad and can be extended to predict other motifs. A unique feature of BPNet is its
ability to predict binding profiles based solely on the input sequence data[11]. The specific
architecture of BPNet consists of several key components, as illustrated in Figure 2.

The initial convolutional layer scans the input sequence for relevant motifs. This is fol-
lowed by additional convolutional layers with increasing dilation and residual connections[11].
The dilation (number of skipped positions in the convolutional filter) of these layers is
doubled at each layer. Residual connections, also known as skip connections, allow the
output of a layer to be added to the output of a deeper layer, enabling the output from
a layer to bypass intermediate layers[11].

BPNet’s structure is similar to ResNet but features exponential dilation in the convolu-
tional layers[11]. This approach addresses the problem of vanishing gradients, allowing
BPNet to learn from high-resolution data and provide interpretable outputs.

3.1.1 Loss function

BPnet utilises a combination of two types of loss functions: a profile loss and a count
loss. The profile loss is responsible for predicting the overall binding profile shape, while
the count loss predicts the total number of reads, also known as binding intensity.

The profile loss used in BPnet is the Multinomial Negative Log-Likelihood Loss. It
measures how well the predicted probability distribution of binding events matches the
observed distribution across the base pairs in the sequence [11].

The count loss employed is the Mean Squared Error Loss. This loss calculates the average
squared difference between the predicted and the observed total read counts, ensuring
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Figure 2 – The BPNet Architecture consists of a convolutional layer that scans the input
sequence for relevant motifs. The following layers are convolutional layers with increasing
dilation and residual connections. The last layer is a fully connected linear layer that
predicts the profile counts for each nucleotide.

that the overall magnitude of the predicted binding profile aligns with the observed
binding profile [11].

Both of these loss functions are summarised in the following equation:

Loss = −β logPmult
(
kobs∣∣ppred, nobs)+ α

(
log(1 + nobs)− log(1 + npred)

)2
Here, kobs is the vector of length L of observed read counts for a particular strand and
a particular task. ppred is the vector of length L of predicted probabilities along the
sequence [11]. The nobs =

∑
kobs
i is the total number of observed counts, and npred is

the total number of predicted counts for the sequence. The first term represents the
Multinomial Negative Log-Likelihood Loss, and the second term represents the Mean
Squared Error Loss. These terms together reflect both the shape of the binding profile
and the intensity [11].
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Figure 3 – The plot shows the predicted vs. observed CAGE (Cap Analysis of Gene
Expression) profiles for regions 3’ of annotated stop codons in Saccharomyces cerevisiae.
The x-axis represents the position relative to the end of the Coding Sequence (CDS) while
the y-axis displays the expression levels. The hyperparameter values used in the was
α = 0.2, β = 0.8, and profile loss type was multinomial.

3.2 Language model

A language model is a statistical tool used in natural language processing (NLP) to
predict the probability of a sequence of words. It assigns probabilities to sequences of
words to predict the next word based on the preceding sequence [12]. This concept can
also be applied to predicting sequences of nucleotides. Neural language models have
gained popularity in recent years due to their ability to capture long-range dependencies
in text and produce more accurate predictions than traditional models. Examples of
neural network architectures include Recurrent Neural Networks (RNNs), Long Short-
Term Memory networks (LSTMs), and more recently, Transformer models [12].

Recent advances in NLP due to transformers [13] have also benefited DNA sequence
modeling. An example of a transformer model is BERT (Bidirectional Encoder Repre-
sentations from Transformers). DNABERT is an adapted version of BERT for nucleotide
sequencing, which is applied in this project.

3.2.1 DNABERT

DNABERT employs a transformer-based architecture tailored for genomic sequences.
Unlike traditional transformer models that use an encoder-decoder structure [14], DNABERT
uses only the encoder component(Figure 4). DNABERT is unique because the input DNA
sequences are tokenized into overlapping k-mers, which are subsequences of length k[14].
The embedded sequences are then fed into 12 transformer layers, where the self-attention
mechanism considers all input positions bidirectionally[14].

DNABERT employs a masked language modeling (MLM) approach. Randomly selected
k-mers, constituting 15% of the sequence, are masked, and the model is trained to predict
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Figure 4 – DNABERT employs a transformer-based architecture. Unlike traditional
transformer models that use an encoder-decoder structure, DNABERT uses only the en-
coder component.DNABERT is unique because the input DNA sequences are tokenized
into overlapping k-mers. The embedded sequences are then fed into 12 transformer layers,
where the self-attention mechanism considers all input positions bidirectionally.

these masked tokens [14]. This approach encourages the model to learn the underlying
patterns and semantics of the sequences.

3.2.2 DNA Species Language Model

The architecture of the species-aware DNA-LM [15] used in this project is based on
the DNABERT transformer model, featuring 12 encoder layers and approximately 90
million parameters. The model includes species information as an additional input token,
enhancing its ability to learn and transfer regulatory features across different species.

3.2.3 Metrics

To evaluate the performance of our models in predicting polyadenylation (poly-A) site
counts, we transform the problem into a classification task by using the softmax func-
tion. This approach allows us to leverage a range of classification metrics. The Pearson
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correlation coefficient measures the linear relationship between predicted and true poly-
A counts. Classification metrics such as AUROC (Area Under the Receiver Operating
Characteristic Curve) assess the model’s ability to correctly identify poly-A sites, focus-
ing on precision-recall and the trade-off between true positive and false positive rates.
These metrics are calculated with binning to reduce resolution and handle ambiguous
positions.

3.3 Finetuning

A breakthrough in deep learning is the ability to inexpensively reuse pretrained foun-
dation models and apply them to a wide range of specific tasks, a technique known as
fine-tuning. Fine-tuning is employed on large language models that have been pretrained
on vast amounts of data to adapt these models for specific downstream tasks. During
the fine-tuning process, all parameters of interest are updated to minimize the loss on
the task-specific dataset, thereby enhancing the model’s performance on that particu-
lar task. The specific Fine-tuning technique that has been applied in the project is
LoRA(Low Rank Adapation).

3.3.1 Low Rank Adaptation (LoRA)

LoRA is a fine-tuning technique which freezes the pre-trained model weights and intro-
duces trainable rank decomposition matrices into each layer of the transformer architecture[16].
This because the pretrained weights have a low intrinsic rank. This means that even
though the model’s pretrained weight matrices may be high-dimensional, the essential
weight updates for fine-tuning lie in a lower-dimensional subspace[16]. The smaller matri-
ces that are updated during training are derived through low rank matrix decomposition
of the high-dimensional pretrained weight matrix. The benefits of using the LoRA is that
it leads to fewer parameters to train and reduces computational and memory overhead.
This makes also makes the adaption less resource intensive[16](Figure 5)
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Figure 5 – This Figure illustrates the Low-Rank Adaptation (LoRA) technique used
to fine-tune large language models. The pretrained weights (W ∈ Rd×d) represent the
original weight matrix of the pretrained model. Two smaller matrices, A and B, are
introduced to approximate the updates to W

.

3.4 Interpretation

3.4.1 TF-MoDISco

The purpose of TF-MoDISco(Transcription Factor Motif Discovery from Importance
Scores) is to identify high quality non-redundant motifs from the per-base importance
score of an input sequence[17]. These scores are computed using DeepLIFT, which takes
the gradient of the prediction based on the input[18]. The DeepLIFT attribution scores
represent the difference in the activation of the neurons between the input sequence and
a reference sequence. The algorithm in TF-MoDISco involves multiple steps, which are
the following: identifying important sequence segments (seqlets), clustering them into
metaclusters based on their contribution scores, and merging seqlets into motifs while
optimizing motif boundaries [17]. The final output of TF-MoDISco is a set of high-quality
motifs that represents the recurring patterns from the input DNA sequences.

4 Methods

4.1 Data Preparation

The preprocessing of our data is essential for transforming raw genomic information into
a format suitable for model training, specifically focusing on regions with poly(A) sites.

First, we load the genomic counts and TIF-seq data. The TIF-seq data is then matched
with the genomic dataset to target regions around the poly-A sites. We aggregate counts
of nucleotide sequences separately for glucose and galactose growth conditions, accurately
aligning them to the regions of interest.

Sequences are truncated to 300 base pairs to standardize the input length for the model.
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Each nucleotide is then one-hot encoded for the BPNet model or converted into 6-mers
using the SpeciesLM tokenizer, with start and end padding tokens and a ’yeast’ token.

The dataset is split into training, validation, and test sets based on chromosome data.
Chromosomes I to XIV, and XVI are used for training, chromosome XV for validation,
and chromosome VII for testing. This ensures distinct data sets for robust model evalu-
ation.

4.2 Interpretation

Interpretation was done by comparing the motifs apprehended from MoDISco with lit-
erature. To further confirm credibility of the results we investigated the seqlets that
MoDISco had used for creating the patterns and looked at a few of the whole sequences
to find adjacent motifs in that sequence. This was also done in combination with looking
at the attribution scores of these sequences.

Furthermore, all seqlets from pattern 0, 1, 2, 6, 8 and 10 was picked and searched for in
their respective sequences, to detect other elements described in literature adjacent to
the motifs in the seqlets.

4.2.1 TF-MoDISco

We have chosen DeepLIFT [18] as our method for interpretation. A technical issue arose
with the way the data is tokenized when using the LM. SpeciesLM takes input IDs of the
k-mers, which are then mapped using a lookup table into a 768-dimensional embedding
vector. Due to the one-to-one correspondence between these entities, we take derivatives
with respect to this embedding rather than the token IDs themselves. This approach
allows us to obtain an attribution score for each k-mer, which we then distribute over all
nucleotides corresponding to one k-mer or token. This method enables us to use a fast
interpretation technique instead of relying on in silico mutagenesis. One observation is
that this method leads to smoother-looking motifs in the subsequent MoDISco report.
Consequently, the attribution scores and resulting motif plots must be interpreted with
this method in mind, and cannot be directly compared to those produced by BPNet.

5 Results

To evaluate the efficacy of large language models (LLMs) for polyadenylation site pre-
diction and LoRA for fine-tuning, we use BPNet as our baseline model. The model
compared to this baseline features a mixed architecture that utilizes SpeciesLM’s last
hidden layer, followed by a shallow convolutional prediction network. This network is
trained with low-dimensional LoRA matrices added to and trained on the LLM’s encoder
blocks.

To capture the effect of LoRA as a fine-tuning method through ablation, we tested
multiple alternative model architectures to fairly compete with LoRA. After thorough
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evaluation, we settled on a deeper convolutional network with the BPNet architecture and
frozen SpeciesLM weights as an alternative to LoRA fine-tuning. This deeper network
serves as a comparative model to demonstrate how allowing the signal to propagate
through the entire network, instead of training on fixed embeddings, can be more effective.

We will refer to these models: model 1: BPNet , model 2: SpeciesLM + LoRA , and
model 3: SpeciesLM without LoRA .

5.1 Models and Training

To establish fair conditions, all model hyperparameters were first optimized with a
Bayesian hyperparameter search. The best hyperparameters used in the final comparison
model are detailed in the following table:

Hyperparameter BPNet SpeciesLM + Lora SpeciesLM

Learning Rate 5e-4 7e-4 5.9e-5
Epochs 90 65 77
Params 110K 92.5M 104M
Trainable Params 110K 2.4M 13.8M
N-layers 8 4 12
N-filters 64 [512, 256, 128] 512
Batchnorm No Yes No
Dilation Yes No Yes
Batch size 32 32 32
Kernel Size [First, Middle, Last] [11, 3, 75] [3, 3, 3] [11, 3, 75]

Table 3 – Model Hyperparameters

Model 1 did not benefit from increased parameter capacity; the best number of layers
remained at six with a kernel size of 3. Models 2 and 3 use SpeciesLM’s last embedding
layer, which is then fed into additional convolutional layers. Model 2 has 4 layers that
sequentially reduce the latent space dimension from 768 to 512, 256, and 128 before the
final prediction layer. This produced good results in combination with LoRA fine-tuning.
Conversely, the same architecture without LoRA (with SpeciesLM weights frozen) per-
formed below baseline, likely because the shallow trainable network couldn’t transform
the embedded features into prediction counts.

To make a fair comparison to LoRA fine-tuning, we first tried unfreezing the last encoder
layer of SpeciesLM to increase the network’s capacity. This increased the parameter
count rapidly but produced results below baseline, likely due to the difficulty of choosing
a proper learning rate for the encoder block. Our final pick for Model 3, which produced
slightly better results than the baseline, was a deeper convolutional network on top of the
hidden layer with the BPNet structure, using dilation in 12 layers with 256 filters. This
network, although parameter-heavy, produced good results and represents an orthogonal
strategy to LoRA fine-tuning.
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5.2 Model Evaluation

The models were compared based on their validation loss. The training time for the
BPNet model was significantly faster compared to Model 2 and Model 3.

We trained with a patience of 10 epochs, selecting the final models based on the best
validation loss observed (6). Although the descent was not very smooth, we did not
observe any double descent behavior in the larger models.

Figure 6 – Validation loss training curves for the BPNet baseline model, the SpeciesLM
model with LoRA, and the SpeciesLM model without LoRA

5.3 Test Metrics

All captured metrics are presented in Table 4. Model 2, which incorporates LoRA, had
the lowest validation and test loss, with Model 3 trailing behind but both outperforming
the baseline.

To properly assess the models, we also considered other metrics such as the mean and
median Pearson correlation, providing a more intuitive measure of the models’ ability to
accurately capture the profile. Here again, Model 2 outperformed both compared models
by a significant margin. The same trend was observed in the AUROC metric. Overall,
Model 2 demonstrated clear performance gains over the baseline and Model 3 without
LoRA.

5.4 MoDISco Report

MoDISco presented 14 positive patterns for potential motifs based on the 3’ species
language model with LoRA finetuning. We chose six patterns in the reverse strand from
the report presented below, two distinct motifs for each of the three elements found in
literature (for full MoDISco report, see Appendix).
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Pearson Median Pearson Mean AUPRC AUROC Test Loss

BPNet 0.730 0.682 0.605 0.920 939.203
SpeciesLM + LoRA 0.809 0.739 0.640 0.931 711.484
SpeciesLM 0.771 0.703 0.623 0.926 844.048

Table 4 – Comparison of models based on test set metrics: Median and Mean Profile
Pearson Correlation, Profile AUPRC, AUROC, and Loss

Looking at the results, we can see that the model with LoRA finetuning does locate motifs
of interest. In figure 7, we see a clear CA dinucleotide in pattern 1 an both pattern 1
and 10 show of a short stretch of A. Additionally, both sites seems to have T:s directly
upstream and downstream of the respective pattern, further indicating these could be
poly(A) sites. Pattern 6 and 8 show potential positioning elements and that there might
be potential variability in some bases. For example, in pattern 6 can be interpreted
to include the sequence AAUAAA from positions 20 to 25, but also UAUAAA and
AAAAAA (with a comparably lower probability of an A at position 23). In pattern 8,
The most clear motif shows an AAAAAA positioning element from position 5 to 10,
but also UAUAAA from position 4 to 9. Both patterns 0 and 2 are consistent with the
efficiency element UAUAUA.
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Figure 7 – MoDISco patterns showing potential motifs for the three elements
in polyadenylation in yeast. The elements of interest are circled in blue. A) Two
patterns of potential polyadenylation sites. Both patterns show strong indications of CA
and indications of more A:s downstream. The sites in both patterns also seems to be
flanked with T. B) Two patterns of potential positioning elements. Both patterns suggest
motifs with sequences described in literature, for instance AAUAAA and UAUAAA po-
sitions 20-25 in pattern 6, and in pattern 8 UAUAAA and AAAAAA positions 4-9 and
5-10 respectively. C) Two patterns showing TA-rich segments which coincides with the
efficiency element UAUAUA.

Since these results do not tell us about the order and spacing between motifs in the
sequence, the seqlets making up the patterns (figure 7) were searched for in the sequence
to look for adjacent motifs. Results show that no apparent motifs of high attribution
scores can be observed (figure 8).
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Figure 8 – LoRA attribution scores for one seqlet in pattern 1. Pattern 1 shows
the motif of a poly(A) site, from which one seqlet was picked and displayed with its
contribution scores showed in the lower figure. The figure above is the sequence the seqlet
is derived from (blue square). The most probable poly(A) site that contributed to the
motif is between position 16 and 20. Since our approach of using DeepLift allowed us to
obtain attribution scores for each k-mer, which then was distributed over all nucleotides
corresponding to one k-mer, this plot cannot be directly compared to the plots produced
by BPNet.

6 Discussion

The motifs identified by MoDISco seemed to successfully find elements of interest to
polyadenylation. However, these results cannot tell us about the order and spacing
between motifs. In order to find any type of similarities between sequences to potentially
carry a motif, MoDISco [17] searches locally for patterns of interest, hence giving a very
small windows of patterns. In order to confirm that these patterns would appear in
proximity to other elements, we looked at the seqlets making up each pattern 0, 1, 2, 6, 8
and 10 and searched for them in their respective sequences. After thorough investigation,
we found very weak associations between the seqlets that DeepLift has provided and the
sequences from the validation set of the LoRA [16] model. Furthermore, many of the
seqlets found in the sequences had low and even sometimes negative contribution scores.

The reason for the disconnect between the attribution scores in the sequence on which
the seqlet was derived and the final motif discovery from MoDISco could occur due to
the sliding window effect and chosen sizes for the seqlets themselves.

7 Conclusions

This study demonstrates the effective utilization of DNA language models in predicting
polyadenylation sites with single base pair accuracy. By leveraging models such as BPNet
and SpeciesLM [15] and employing fine-tuning techniques like Low Rank Adaptation
(LoRA) [16], we achieved significant improvements in the performance of poly(A) site
predictions. Notably, the fine-tuned SpeciesLM model with LoRA outperformed baseline
models across all key metrics.

MoDISco analysis validated the model’s predictive capabilities by confirming the presence
of relevant motifs. The study also emphasized the critical role of efficient fine-tuning,
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as the LoRA-enhanced model exhibited clear performance advantages over models using
traditional fine-tuning methods. However, these performance gains over the baseline
come with trade-offs, including larger model sizes, longer training times, and challenges in
computing attribution scores, making them less interpretable compared to CNN kernels.

These findings highlight the potential of DNA language models in genomic research, pro-
viding a powerful tool for understanding and predicting regulatory elements in untrans-
lated regions of mRNA. Future research could refine these models further and explore
their application across various species and genomic contexts, potentially enhancing our
comprehension of gene regulation and expression.

For interpretation, future research could explore alternative approaches such as in silico
mutagenesis. It would also be beneficial to further investigate the discovery of motifs in
the original sequences from which the seqlets used in MoDISco were derived.

8 Contribution statements
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pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev

pos_patterns.pattern_0 35

pos_patterns.pattern_1 32

pos_patterns.pattern_2 31

pos_patterns.pattern_3 26

pos_patterns.pattern_4 24

pos_patterns.pattern_5 24

pos_patterns.pattern_6 22

pos_patterns.pattern_7 20

pos_patterns.pattern_8 20

pos_patterns.pattern_9 20

pos_patterns.pattern_10 18

pos_patterns.pattern_11 15



pattern num_seqlets modisco_cwm_fwd modisco_cwm_rev

pos_patterns.pattern_12 13

pos_patterns.pattern_13 13

pos_patterns.pattern_14 12

neg_patterns.pattern_0 37

neg_patterns.pattern_1 32

neg_patterns.pattern_2 22
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