PRIME IMPLICANTS FOR QUINE-MCCLUSKEY

Peter Nutter
Gerald Prendi
Grzegorz Swiader
Leyla Yaayladere

Department of Computer Science
ETH Zurich, Switzerland

ABSTRACT

We present a performant implementation for the prime im-
plicant generation step of the Quine-McCluskey algorithm,
a fundamental task in Boolean logic minimization. Our
approach builds upon the dense bit-slicing implementation
by Aleksei Udovenko [1] and introduces novel computation
layouts we call CROSS-DIMENSIONAL and CROSS-LAYER.
This significantly improves temporal data locality, mitigat-
ing the memory bandwidth bottleneck that constrains per-
formance for large problem sizes. Combining the locality-
aware memory access pattern with AVX vectorization and
other loop unrolling, our implementation demonstrates a
considerable performance increase. On our test platform,
it outperforms the reference implementation, achieving a
speedup of up to 2.06x for problem size n = 23. Our
roofline analysis confirms that our method achieves higher
operational intensity, making more effective use of the pro-
cessor’s computational resources.

1. INTRODUCTION

Motivation. The minimization of Boolean functions is a
cornerstone of digital logic design, with direct applications
in circuit synthesis, artificial intelligence, and other compu-
tational fields. The Quine-McCluskey (Q-M) algorithm is
a tabular method that provides a deterministic way to find
the minimal sum-of-products form of a Boolean function.
The algorithm’s complexity is exponential, so its runtime
and memory footprint grow exponentially with the number
of input variables n. This exponential growth makes the
performance of its implementation a critical concern, espe-
cially when dealing with the large-scale problems common
in modern applications. Consequently, developing high-
performance implementations that efficiently handle large
n is of significant practical importance.

Related Work. Several approaches have been proposed
to accelerate the Q-M algorithm. One of these methods,
which we use as our baseline, is the ”dense” implementation

by Aleksei Udovenko, referred to as "Hellman” in the rest of
the paper [1]. Hellman’s algorithm leverages bit-slicing, a
technique that uses bit-parallelism to perform comparisons
between many terms simultaneously, leading to a substan-
tial speedup over naive implementations. However, as we
will show, for large problem sizes, its performance becomes
limited by memory bandwidth due to its memory access pat-
terns, which exhibit poor data locality.

Contribution. In this paper, we present a series of op-
timizations that overcome the data movement limitations
of existing high-performance Q-M implementations. Our
main contribution is a novel computation strategy we term
the CROSS-DIMENSIONAL & CROSS-LAYER approach. This
method reorders the computation and merges multiple steps
of the original algorithm to improve data locality. We detail
our optimization journey, starting from the baseline.

2. BACKGROUND ON THE ALGORITHM

This section discusses the background of the algorithm, de-
tails of the reference implementation, and shows our cost
measure.

General Quine-McCluskey Method. The algorithm
begins with a truth table and iteratively finds and merges
implicants that differ by exactly one bit. For example, two
terms t; and t5 merge if their bitwise XOR, t; & ¢, is a
power of two. The resulting term contains a “don’t care”
in the differing bit position. This process continues until
no more merges are possible. The remaining implicants are
called the prime implicants.

Baseline Algorithm. The implementation we compare
against is the DENSE algorithm from hellman’s paper [1].
The next few paragraphs explain the baseline’s implemen-
tation details, also relevant for our versions of the algorithm.

Ternary Representation. Every implicant over n vari-
ables can be written as a word of length n over the alpha-
bet 0, 1, —, where ’-’ denotes “don’t-care.” Interpreting this
word as a base-3 number - with digits0 — 0,1 — 1, — — 2

- maps the 3™ possible implicants to a range of indices. To
denote presence of implicants, bits in a large bit-vector S
are set to 1.

Bit-Slicing and Data Partitioning. To manage this bit
vector and enable parallel processing, hellman combines
data partitioning with a technique called bit-slicing. First,
he partitions the n variables into a bottom layer of h = 5
variables and a fop layer of the remaining ny, = n — h.
The choice of h = 5 is deliberate: 3° is the power of three
closest to a power of two - 28. This enables processing all
3% = 243 bits in parallel by bitwise logical instructions.

Block Indexing. These 243-bit blocks are stored con-
tiguously in the main array S. The specific values of the
top-layer variables determine the block’s index. As a result,
processing a dimension d in the top layer requires stepping
through S with a stride of 3%. In these top-layer phases,
blocks are always accessed in triples (s, ¢, u) with indices
<b, b+ stride,b+ 2 - stm’de>.

Algorithmic Phases. Hellman’s algorithm and imple-
mentation has two logical phases in two logical layers. First,
hellman iterates through the nj top-layer dimensions, pro-
cessing triples of blocks in the (1) top-layer merge. Next,
within each of the 3"» blocks, for the h bottom-layer di-
mensions, he processes first the (2) bottom-layer merge
and then the (3) bottom-layer reduce. Lastly, he iterates
through the n;, top-layer dimensions again, processing the
(4) top-layer reduce phase.

The merge operation on a triple is defined by

(0> X15 X+) = (X0s X15 X+ V (X0 A X1))5
while the reduce is given by

(XO;XI;X*) — (XO A “Xxs X1 A Xk X*)

Cost Measure and Analysis. We define a cost model
based on the number of bitwise operations performed dur-
ing the merge and reduce phases, counting only the core
binary operations: AND, OR, and fused AND-NOT. Bit-
wise shifts and control logic are excluded from the model.
The merge step is counted as one AND and one OR, while the
reduce step is counted as two AND—-NOT operations. The to-
tal cost measure is C(n) = Cp-Na+Cy - Ny +Cr- Nao,
with operation counts determined by the algorithm’s deter-
ministic passes through top and bottom layers regardless of
input, since it checks all minterms.

Nep= 3" (n—5) - 256
Iterates blocks by 3 top dimensions bits in a block
Noge = 3"7° . 5 . 256
N~ ~—~— ~—~—

Iterates all blocks bottom dimensions bits in a block
Np = Ntop ~+ Npot
Ny =]Vtop + Npot
N/\ﬂ =2- (]Vlop + Nbot)

3. OPTIMIZATION PERFORMED

In this section, we describe the optimizations we performed
over the baseline implementation. These include amongst
other things, reducing the operation count, two kinds of
temporal locality improvements and using AVX instructions
in an explicit load-compute-store SSA style to achieve bet-
ter ILP. Where appropriate, we visualize the optimizations
on graphs and give formulas quantifying the improvements.
These optimizations are parameterizable, lending themselves
to code generation.

The baseline exhibits poor locality. Figure 1 shows
that the reference implementation exhibits no temporal data
locality. It makes (n — 5), 1, and (n — 5) strides across
the entire table in the top layer merge, bottom layer, and top
layer reduce respectively, for a total of 2n — 9 full strides.
The size of the table is exponential in n (37~° - 2° bytes),
so for sufficiently large n the table no longer fits in cache,
making the computation memory-bound.

1/
{7
/
////
/
m/

state_blocks Index

3! 1000

/

15000
‘Time (all accesses)

/
/
/
f

20000 25000 30000

Fig. 1: Access pattern for hellman’s DENSE for n = 12.
The red line denotes accsses in the bottom layer.

Hellman's order of accesses Cross-dim order of accesses

e dimi
o dimi+l

Fig. 2: The idea behind CROSS-DIM access pattern. We
process triples from dimension ¢ 4 1 as soon as all relevant
triples from dimension ¢ have been processed.

Alternative approach: Tree algorithm. Our initial at-
tempt to address the locality problem involved a complete
restructuring of the data layout. We designed a “tree algo-
rithm” where implicants were grouped into bins based on
their number of ”don’t care” symbols and the positions of

> for

those symbols. This approach seemed elegant, as merges
would only occur between specific, well-defined bins, po-
tentially improving locality. However, the implementation
proved conceptually complex, and the irregular data struc-
tures made efficient vectorization difficult. We were unable
to outperform the baseline and therefore returned to opti-
mizing the dense, bit-slicing approach.

2000 /
1750 /
1500 /

1250

1000 /
750 /
500

250 ;

[5000

Accessed Block Index

10000 15000 20000

Access Timeline

25000

Fig. 3: Access pattern for CROSS-DIM for n = 12,¢ = 5.

Cross-dimensional locality. We apply a blocking op-
timization for the top layer computations to split the whole
table into smaller working sets that fit into cache. The core
idea is vizualised for working across 2 dimensions in Figure
2, but the same pattern can be applied across any number of
dimensions ¢ at a time. Figure 3 shows the memory access
pattern for ¢ = 5, the value we found best for this parameter.
In this section we explain the case where ¢ = 2 for simplic-
ity. Listings 1 and 2 are the snippets of code corresponding
to memory access patterns in Figures 1 and 2.

// go over full table

(size_t b = 0; b < n_blocks;

// process 1 dimension only

for (size_t c¢c = 0; ¢ < shift; c++) {
TOP_MERGE (S, b + ¢, shift);

b += step) {

}

Listing 1: Baseline: One dimension per stride

There are two interesting ideas in Listing 2:

1. The ordering of the loops: we go step by step through
dimension d + 1 (b += stepl), and within it, we do a
1-stride (c++), processing dimension d when needed
(c < shift0). This loop order is good because it min-
imises the size of the working set. Within an iteration
on ¢, we access 32 (or 3! in the general case) blocks.

2. Loop specialization. Instead of using an if statement
to check ¢ < shift0, we split the loop into two spe-
cialized ones: one where ¢ € [0, shi ft0), and another
where ¢ € [shift0, shift1) to get better code locality
and less branching.

This optimization reduces the number of memory strides
roughly by almost a factor of £. A more rigorous analysis is
given at the end of the ”smoothing” paragraph.

// go over full table

> for (size_t b = 0; b < n_blocks; b += stepl) {
size_t ¢ = 0;
// process 2 dimensions together
for (; ¢ < shift0; c++) {
size_t basel = b + c;
int i;
for (1 = 0; i < TOP_MERGE_ITER; i++) {
size_t base0 = basel + i * step0;
TOP_MERGE (S, base0O, shift0);
}
TOP_MERGE (S, basel, shiftl);

}

// process the remaining elements

for (; ¢ < shiftl; c++) {
size_t basel = b + c;
TOP_MERGE (S, basel, shiftl);

Listing 2: Cross-dim: Two dimensions per stride

Reducing the operations count. Listing 2 makes use
of a constant TOP_MERGE_ITER. From Figure 2 we can
see that to process a triple from dimension d+ 1, we need to
process 3 triples from dimension d. By a happy accident, we
first coded the top-layer merge loop to range over ¢ € [0, 2)
instead of ¢ € [0, 3), but the code still passed the tests for
correctness. This reduction works only for the merge phase
of the algorithm, but not for reduce. Figure 4 shows the ac-
cess patterns for the merge phase with skipped computation
(on the left of the red lines), and for the reduce phase with
full computation (to the right of the red lines).

We don’t have a proof of correctness, but test-based ev-
idence supports the claim that this reduction preserves cor-
rectness of the algorithm. It also proved difficult for us to
analyze the number of operations performed by this new
version of the algorithm, so we don’t have a formal cost
analysis. Instead, we instrumented the code to count the
number of operations at runtime.

Accessed Block Index

1000

3000
Access Timeline

4000 5000 6000

Fig. 4: Access pattern with skipping unnecessary merges (to
the left of the red lines) and without skipping computation
for reduces (to the right of the red lines).

S

Accessed Block Index

0 5000 10000 15000 20000 25000 30000
Access Timeline

Fig. 5: Access pattern for CROSS-DIM-CROSS-LAYER for
n =12,t = 5, b = 5, without skipping merges.

Cross-dimensional smoothing. Fixing ¢ to work across
t top-layer dimensions at a time, we have (n — 5) mod ¢ di-
mensions left over. To finish processing them, we can fall
back on the one-by-one stride of the reference implementa-
tion. A slightly more sophisticated solution is to smooth this
part out, writing (generating) code for work across ¢, t — 1,
..., 1 dimensions at a time. When working across ¢ dimen-
sions at a time with smoothing, the number of full strides in
a top layer becomes {"T_ﬂ , for 2 ["7_51 +1 memory strides
in the full computation. For example, for n = 23 and ¢t = 5,
we improve from 2+ (23—5)+1=37t02 [2=2] +1=9
full memory strides.

Bottom-layer ILP. In the bottom layer, the most expen-
sive operations are the bitshifts. There is no AVX instruc-
tion that treats the entire 256-bit register as one value and
shifts it by an immediate number of bits. Thus, to hand-
roll an AVX implementation of bitshifts, we need to write
a sequence of permutations and packed 64-bit integer ands,
shifts, and ors. A single bitshift then has quite a large la-
tency. Interleaving these bitshifts for multiple independent
blocks can give a good speedup by exploiting ILP.

Cross-layer locality. Figure 5 shows another idea: we
can move some of the dimensions in the top layer to be
computed in the same memory stride as the bottom layer.
For simplicity of implementation, we move the lowest b di-
mensions from the top layer to be processed alongside the
bottom layer. This also has the benefit of having the blocks
consecutive in memory - preparing for the optimization de-
scribed in the previous paragraph. This cross-layer opti-
mization improves slightly on the number of full memory
strides: given n,t, b the number of strides will be [2=2=]
in the top layer, and 1 in the bottom layer, for a total of
2 ["%571’] + 1 full memory strides. When b = ¢, it removes
an additional 2 strides (1 per top layer).

Code generation. The optimizations listed above are
all parameterizable. We wrote a python script to generate
the code for different parameters. For practical reasons we
limited ourselves to measuring code for parameters under 8.

4. EXPERIMENTAL RESULTS

This section presents the empirical evaluation of our op-
timizations. We first explain our experimental setup and
methodology. We then present and analyze the performance
results, comparing our optimized implementations against
the baseline. We report speedups given by each individual
optimization. Finally, we use cache-aware metrics and a
roofline model to provide deeper insight into the source of
the performance gains.

Experimental Setup. All experiments were conducted
on an AMD Ryzen 7 4800H (Renoir) processor. This pro-
cessor is a Zen2 microarchitecture and has a base clock
speed of 2.9GHz. The Ryzen 7 4800H processor has a cache
hierarchy of:

L1d 32KiB, 8-way associative, 64B line size, per-core,
L2 512KiB, 8-way associative, 64B line size, per-core,
L3 8MiB, 16-way associative, 64B line size, shared,

which differs from the Renoir specification in the 8MiB (in-
stead of 4MiB) L3 cache. Zen2 processors have a Floating
Point execution unit with 4 ports that can perform AVX in-
structions. Given that we’re not using FMA instructions and
we count bit operations, the peak performance of a Zen2
processor is 1024 bitops per cycle.

The code was compiled using GCC 14.3.1 with the flags
-O3 -march=native -mavx2 -std=c++17. To ensure accu-
rate and stable measurements, we used the rdtsc instruction
to count CPU cycles and a high_resolution_clock from the
standard library to measure the seconds independently.

el Median CPU cycles vs. n (Problem Size) for Density = 100
1.4

Algorithm

—e— Hellman's Dense Algorithm (C++)
codegen_cross_dim_2_sharp_bitset_ref 01_full
—=— codegen_cross_dim_2_sharp_bitset_ref 01_skip
12—+ codegen_cross_dim_5_sharp_bitset_ref 01_skip
—+— codegen_cross_dim_5_smooth_bitset_ref_01_skip

—«— codegen_cross_dim_5_smooth_bitset_lcs_01_skip

codegen_cross_dim_5_smooth_immintrin_01_skip

1.0 —— codegen_cross_dim_5_smooth_immintrin_06_skip
codegen_cross_dim_5_smooth_bitset_lcs_01 cross_layer 05_skip

o
®

Median CPU Cycles
°
o

0.0

n (Problem Size)

Fig. 6: Best versions of our code after each optimization.

Each data point represents the median of 100 runs, pre-
ceded by several warmup runs. We evaluated performance

across a range of problem sizes from n = 12 to n = 23 and
for various function densities, though we primarily present
results for density 100 and 20 < n < 23.

Results. Figure 6 outlines the runtimes of the best ver-
sions of our code after each optimization step. In short: we
first reduce the operations count with the MERGE-SKIP op-
timization, we search for the best parameter ¢ for CROSS-
DIM, then apply top-layer SMOOTHING. For the bottom
layer, we compare different versions of unrolling. Finally,
we search for a good parameter b for the CROSS-LAYER op-
timization. The best parameters turn out to be t = b = 5,
and using C++ bitsets with no manual unrolling in the bot-
tom layer. The best speedup we obtain for n = 23 is 2.066.

Merge-skip. We apply this optimization first because
it changes the number of operations from the reference im-
plementation. Working over ¢ = 2 dimensions at a time in
the top layer, we get a 1.2137 speedup over the baseline,
as shown in figure 7. Note that this speedup includes both
the change from hellman to CROSS-DIM 2 and the MERGE-
SKIP. The more significant gain in this speedup comes from
the CROSS-DIM optimization because of the reference im-
plementation’s bad memory access pattern.

lell Median CPU cycles vs. n (Problem Size) for Density = 100
14

Algorithm

—e— Hellman's Dense Algorithm (C++)
codegen_cross_dim_2_sharp_bitset_ref 01_full
—=— codegen_cross_dim_2_sharp_bitset_ref 01_skip

Median CPU Cycles

/

20 2

J
" /
o
1 22 23
n (Problem Size)

Fig. 7: Runtime comparison of the reference implementa-
tion against the CROSS-DIM (data movement) and MERGE-
SKIP (compute) optimization ideas.

Cross-dim parameters. Given ¢, the working set for
this optimization is 3¢ bitset blocks. Increasing ¢ causes the
algorithm to make fewer full memory strides, but with an
increased working set size. Given that the L1d cache size
is 32KiB and the cache line size is 64B, the maximum ¢
that still has the working set fully in cache is ¢ = 5 for
just over 15KiB. However, the MERGE-SKIP optimization
reduces the size of the working set for the merge phase.
Experimental results showed us that for ¢ = 6, the extra

L1d cache misses from the reduce phase are offset by the
reduction in the number of memory strides. However, we
saw this only when CROSS-DIM was the only optimization
applied. Combining CROSS-DIM with later optimizations
showed that ¢ = 5 is still the better parameter over { = 6.
The speedup we get for ¢ = 5 over the previous best —¢ = 2
is 1.08.

1e11 Median CPU cycles vs. n (Problem Size) for Density = 100
4

Algorithm
—e— Hellman's Dense Algorithm (C++)

codegen_cross_dim_2_sharp_bitset_ref 01_skip

—=— codegen_cross_dim_3_sharp_bitset_ref 01_skip

1.2 —+~ codegen_cross_dim_4_sharp__bitset_ref 01_skip

—e— codegen_cross_dim_5_sharp_bitset_ref 01 skip

—«— codegen_cross_dim_6_sharp_bitset_ref 01_skip

bitset_ref 01_skip

codegen_cross_dim_7_sharp,

o
®

Median CPU Cycles
o
>

n (Problem Size)

Fig. 8: Runtime comparison for different parameters for the
CROSS-DIM optimization. The best value for this parameter
ist =05.

Cache and Locality Analysis. To further analyze the
source of our performance gain, we plot Operations per Cy-
cle (Ops/Cycle) versus input size in Figure 9. The verti-
cal lines indicate the approximate problem sizes where the
data footprint of the algorithm exceeds the L1, L2, and L3
caches of our test machine. The performance of the baseline
algorithm drops sharply as the working set spills out of the
caches. In contrast, our CROSS-DIMENSIONAL approach
maintains a significantly higher Ops/Cycle rate, demonstrat-
ing its superior cache utilization. The performance of all im-
plementations drops after the L3 cache is exceeded, but our
optimized versions maintain a clear advantage, confirming
they are less affected by main memory latency.

Smoothing. It is difficult to determine the exact speedup
this optimization gives. When n — 5 — b is a multiple of ¢,
there are no extra strides that SMOOTHING could remove.
Butwhenn —5—b=1t—1 (mod), it can remove ¢t — 2
strides from each top layer. Forn = 20, ¢t = 5,b = 0
we obtain no speedup, but forn = 23, ¢t = 5, b = 0, the
speedup was 1.035. For a different choice of parameters —
n =22,t=6,b =0 ("best case”) — we achieved a slightly
better speedup of 1.05.

Unrolling. We found that ’hellman’ was doing some-
thing seemingly harmless in the bottom layer: iterating over

Ops/Cycle (Higher is Better)

\

\

|

J

® > * ? * \npu:"swze(n)@ i * ? i
Fig. 9: Operations per Cycle vs. Input Size (n). The perfor-
mance of our locality-aware methods degrades less severely
as the data size exceeds the machine’s cache capacities.

the blocks by reference. This causes C++ to reflect each in-
dividual change in memory, making the computation reach
out to memory 10 times per block. Changing this loop to an
index-based, explicit load-compute-store style lets the com-
piler apply full unrolling and ILP optimizations. Our hand-
rolled implementations outperform hellman’s bitset imple-
mentation, but an explicit load-compute-store use of the C++
bitset still outperforms our version as seen in figure 10. It
is interesting that manual unrolling for small unroll factors
prevents the compiler from optimizing further, as shown by
the degradation in performance.

lell Median CPU cycles vs. n (Problem Size) for Density = 100
14

Algorithm
—e— Hellman's Dense Algorithm (C++)
codegen_cross_dim_5_smooth_bitset_ref_01_skip
—=— codegen_cross_dim_5_smooth_bitset_Ics_01_skip
1.2 " —+— codegen_cross_dim_5_smooth_immintrin__01_skip
—+— codegen_cross_dim_5_smooth_bitset_ref_03_skip
—+— codegen_cross_dim_5_smooth_bitset_Ics_03_skip +
codegen_cross_dim_5_smooth_immintrin_03_skip
1.0 ~ —— codegen_cross_dim_5_smooth_bitset_ref_06_skip
codegen_cross_dim_5_smooth_bitset_Ics_06_skip
codegen_cross_dim_5_smooth_immintrin__06_skip

Median CPU Cycles

n (Problem Size)

Fig. 10: Different unrolling styles and factors for the
bottom-layer computation. Our hand-rolled AVX code is
slightly outperformed by code generated from C++ bitsets.

Cross-layer parameters. As figure 11 shows, we found
that the best parameter b is 5. We are not quite sure why it’s
not 6. While the working set is 3% bitset blocks, all of them
are consecutive, fitting 2 bitset blocks per cache line. For
b = 6, it would be just under 23KiB. We are at least sure

that for b = 7, the size of the bottom-layer working set
is over 68KiB, causing a number of L1 cache misses and
degrading performance.

el Median CPU cycles vs. n (Problem Size) for Density = 100
Algorithm

—e— Hellman's Dense Algorithm (C++) i
codegen_cross_dim_5_smooth_bitset_Ics_01_skip
—+— codegen_cross_dim_5_smooth_bitset_lcs_01_cross_layer 01 skip
12—+~ codegen_cross_dim_5_smooth_bitset_Ics_01 cross_layer_02_skip
—+— codegen_cross_dim_5_smooth_bitset_Ics_01_cross_layer_03_skip
—«— codegen_cross_dim_5_smooth_bitset_Ics_01_cross_layer_04_skip
codegen_cross_dim_5_smooth_bitset_Ics_01_cross_layer_05_skip
1.0 —— codegen_cross_dim_5_smooth_bitset_lcs_01_cross_layer_06_skip
codegen_cross_dim_5_smooth_bitset_Ics_01_cross_layer_07_skip
/ »

n (Problem Size)

o
Y

Median CPU Cycles
°
&

~
S
~
N
N
N
iy

Fig. 11: Results for investigating the best parameter b for the
CROSS-LAYER optimization. For b = 7, the performance
degrades compared to b = 5 due to L1 capacity misses.

Roofline Analysis. Figure 12 presents a roofline model
analysis of our best implementations against the baseline
for n = 16 and n = 19. This model plots achieved perfor-
mance (ops/cycle) against operational intensity (ops/byte)
for versions of our algorithm without the MERGE-SKIP op-
timization. The plot clearly shows that our CROSS-DIM and
CROSS-LAYER implementations are shifted to the right, so
they achieve higher operational intensity than the baseline.
This means our methods perform more arithmetic opera-
tions for each byte of data transferred from memory. By
improving data reuse, our optimizations successfully move
the computation from being purely memory-bound to the
compute-bound roof of the machine, leading to more effi-
cient use of the available hardware resources.

Reducing the Operations Count. As mentioned in
Section 3, we discovered an optimization that reduces the
number of merge operations in each top-layer dimension.
Because this fundamentally alters the algorithm’s operational
count, a direct comparison on the same performance/roofline
plots would be misleading. Therefore, we first evaluate it
separately by measuring its runtime improvement over our
best locality-optimized version, CROSS-LAYER. This opti-
mization provided a further speedup of approximately 1.21
for n = 23 over the baseline. A visualization of the skipped
computation paths can be seen in the memory access pattern
in Figure 13.

To assess the hardware efficiency of this new algorithm
on its own merits, we present its roofline analysis in Fig-

Model wi

Performance (BINOPs/Cycle)

o Operational Intensity (BINOPS/Byté‘;T B
Fig. 12: Roofline model for n=14 to n=20. Our optimized
algorithms achieve higher operational intensity, indicating
better memory system utilization.

ure 14. The plot shows that for smaller problem sizes like
n = 15— 16, the CROSS-LAYER-SKIP algorithm operates in
the compute-bound region. As the problem size increases to
n = 19, the operational intensity decreases slightly, and the
performance moves closer to the memory bandwidth ceil-
ing, indicating that even with a reduced workload, the algo-
rithm becomes memory-bound as the data set exceeds the
cache capacity.

ZIE

=
=

(b) With skip optimization

(a) Without skip optimization

Fig. 13: Zoomed-in memory access patterns in the cross-
layer part of the algorithm for input size n = 12.

5. CONCLUSION

In this paper, we addressed the primary performance bottle-
neck in the dense bit-slicing implementation of hellman’s
Quine-McCluskey algorithm: poor data locality in the top-
layer processing phases. Our main contribution is a data lo-
calization technique, the CROSS-DIMENSIONAL approach,
which reorders the computation to maximize cache reuse.
By processing multiple dimensions at a time on a small,
contiguous block of data before it is evicted from the cache,
our method dramatically reduces the number of costly main
memory accesses.

Our final implementation demonstrates a clear and sig-
nificant performance improvement over the Hellman base-
line, achieving a speedup of up to 2x (n = 23).

Future Work. There are some optimizations that we

Roofline Model with Skipping

Performance (BINOPs/Cycle)

1 0
Operational Intensity (BINOPs/Byte)

Fig. 14: Roofline model for the CROSS-LAYER-SKIP algo-
rithm from n=14 to n=20. Some n ommited to make the plot
more readable. The plot characterizes the hardware utiliza-
tion of the algorithm with the reduced operation count.

haven’t tried in the time limit of the course. The ones that
we considered but haven’t worked towards are:

* blocking for CROSS-DIM targetting L3 cache,
* blocking for CROSS-LAYER targetting L3 cache,
 changing the storage layout,

* skipping more computation in the merge phase.

6. CONTRIBUTIONS OF TEAM MEMBERS
(MANDATORY)

Peter. After setting up the benchmarking, plotting, and
example generation infrastructure, I implemented the ini-
tial dense version (DENSE ALGORITHM) without bitslicing,
then vectorized it (DENSE-VECTORIZED). Developed the
bitslicing version and attempted to port it to AVX (BIT SLIC-
ING AVX) encountered challenges with AVX bitshifts, so
collaborated with Grzegorz to complete it. Assisted Leylain
getting the tree-algorithm operational. Introduced macros,
and precomputed power tables for further code optimiza-
tion. Later, focused on the roofline plot and simulated cache
hit/miss behavior for roofline analysis.

Leyla. Implemented TREE-BASED dense algorithm to
exploit locality and skip some merge operations; perfor-
mance was limited due to complex index calculations and
poor vectorization. Ported DENSE-VECTORIZED algorithm
to AVX-512, but no gains due to memory bound. Ana-
lyzed memory patterns and proposed BIT-SLICING-SNAKE
(bidirectional pass) to exploit edge locality which had lim-
ited impact. With Grzegorz, proposed combining top and
bottom layer passes (CROSS-DIM); assisted him in extend-
ing this to blocking with proof-checking, debugging, and
analyzing memory access patterns of his implementations.
Counted operations for cost and performance analysis.

Grzegorz. Came up with the CROSS-DIM and CROSS-
LAYER ideas. Found MERGE-SKIP by complete accident.
Together with Leyla, implemented these versions of the al-
gorithms. With help from Gerald, wrote a codegen script
to search for the best parameters for each of the optimiza-
tions. Hand-rolled the AVX 256-bit register bitshifts, which
Gerald then specialized for particular shifts. Tried manual
bottom-layer unrolling. Found that compilers unroll better
and at less pain.

Gerald. Worked on unrolling the BitSlicing implemen-
tation’s bottom layers and merging the two layers. Intro-
duced macros for unrolling, and function call removal. Op-
timized the custom bitshifts implementation for different
shift-sizes, and optimized the vectorized bottom layers to
reduce the number of operations. Did some occasional pro-
filing with Intel Advisor, AMD uProf and worked the per-
fomance plot with caches. Helped Peter and Leyla with the
rooflines. Assisted Grzegorz with brainstorming and debug-
ging the codegen script.

7. REFERENCES

[1] Aleksei Udovenko, “DenseQMC: an efficient bit-slice
implementation of the quine-McCluskey algorithm,”
Cryptology ePrint Archive, Paper 2023/201, 2023.

