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Preface

Recent years have witnessed considerable research activity in 
communication theory by a number of workers both here and 
abroad. In view of the widespread interest in this field, Dean 
L. N. Ridenour suggested the present volume consisting of two 
papers on this subject.

The first paper has not previously been printed in its present 
form, although a condensation appeared in Scientific American, 
July, 1949. In part, it consists of an expository introduction to 
the general theory and may well be read first by those desiring a 
panoramic view of the field before entering into the more mathe­
matical aspects. In addition, some ideas are suggested for 
broader application of the fundamental principles of communi­
cation theory.

The second paper is reprinted from the Bell System Technical 
Journal, July and October, 1948, with no changes except the cor­
rection of minor errata and the inclusion of some additional 
references. It is intended that subsequent developments in the 
field will be treated in a projected work dealing with more general 
aspects of information theory.

It gives us pleasure to express our thanks to Dean Ridenour for 
making this book possible, and to the University of Illinois Press 
for their splendid cooperation.

September, 1949

C. E. Shannon  
W . W eaver
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RECENT CONTRIBUTIONS TO THE MATHEMATICAL 

THEORY OF COMMUNICATION

By Warren Weaver





1
Introductory Note on the General Setting 
of the Analytical Communication Studies1

1.1. Communication
The word communication will be used here in a very broad sense 
to include all of the procedures by which one mind may affect 
another. This, of course, involves not only written and oral 
speech, but also music, the pictorial arts, the theatre, the ballet, 
and in fact all human behavior. In some connections it may be 
desirable to use a still broader definition of communication, 
namely, one which would include the procedures by means of 
which one mechanism (say automatic equipment to track an 
airplane and to compute its probable future positions) affects 
another mechanism (say a guided missile chasing this airplane).

The language of this memorandum will often appear to refer to 
the special, but still very broad and important, field of the com­
munication of speech; but practically everything said applies

1 This paper is written in three main sections. In the first and third, W . W . 
is responsible both for the ideas and the form. The middle section, namely 
“2), Communication Problems of Level A ” is an interpretation of mathe­
matical papers by Dr. Claude E. Shannon of the Bell Telephone Labora­
tories. Dr. Shannon’s work roots back, as von Neumann has pointed out, 
to Boltzmann’s observation, in some of his work on statistical physics 
(1894), that entropy is related to “missing information,” inasmuch as it is 
related to the number of alternatives which remain possible to a physical 
system after all the macroscopically observable information concerning it 
has been recorded. L. Szilard (Zsch. f. Phys. Vol. 53, 1925) extended this 
idea to a general discussion of information in physics, and von Neumann 
{Math. Foundation of Quantum Mechanics, Berlin, 1932, Chap. V ) treated 
information in quantum mechanics and particle physics. Dr. Shannon’s 
work connects more directly with certain ideas developed some twenty 
years ago by H . Nyquist and R. V . L. Hartley, both of the Bell Labora­
tories; and Dr. Shannon has himself emphasized that communication theory 
owes a great debt to Professor Norbert Wiener for much of its basic 
philosophy. Professor Wiener, on the other hand, points out that Shannon’s 
early work on switching and mathematical logic antedated his own interest 
in this field; and generously adds that Shannon certainly deserves credit 
for independent development of such fundamental aspects of the theory as 
the introduction of entropie ideas. Shannon has naturally been specially 
concerned to push the applications to engineering communication, while 
Wiener has been more concerned with biological application (central 
nervous system phenomena, etc.).



equally well to music of any sort, and to still or moving pictures, 
as in television.

1.2. Three Levels of Communications Problems
Relative to the broad subject of communication, there seem to be 
problems at three levels. Thus it seems reasonable to ask, serially:
L evel A. How accurately can the symbols of communication be 

transmitted? (The technical problem.)
L evel B. H ow precisely do the transmitted symbols convey the 

desired meaning? (The semantic problem.)
Level C. H ow effectively does the received meaning affect con­

duct in the desired way? (The effectiveness problem.)
The technical problems are concerned with the accuracy of 

transference from sender to receiver of sets of symbols (written 
speech), or of a continuously varying signal (telephonic or radio 
transmission of voice or music), or of a continuously varying two- 
dimensional pattern (television), etc. Mathematically, the first 
involves transmission of a finite set of discrete symbols, the 
second the transmission of one continuous function of time, and 
the third the transmission of many continuous functions of time 
or of one continuous function of time and of two space coordi­
nates.

The semantic problems are concerned with the identity, or sat­
isfactorily close approximation, in the interpretation of meaning 
by the receiver, as compared with the intended meaning of the 
sender. This is a very deep and involved situation, even when one 
deals only with the relatively simpler problems of communicating 
through speech.

One essential complication is illustrated by the remark that if 
Mr. X  is suspected not to understand what Mr. Y  says, then it is 
theoretically not possible, by having Mr. Y  do nothing but talk 
further with Mr. X , completely to clarify this situation in any 
finite time. If Mr. Y  says “ Do you now understand me?” and 
Mr. X  says “ Certainly, I do,” this is not necessarily a certifica­
tion that understanding has been achieved. It may just be that 
Mr. X  did not understand the question. If this sounds silly, try



it again as “ Czy pan mnie rozumie?” with the answer “ Hai 
wakkate imasu.” I think that this basic difficulty2 is, at least in 
the restricted field of speech communication, reduced to a toler­
able size (but never completely eliminated) by “ explanations” 
which (a) are presumably never more than approximations to the 
ideas being explained, but which (b) are understandable since 
they are phrased in language which has previously been made 
reasonably clear by operational means. For example, it does not 
take long to make the symbol for “yes” in any language opera­
tionally understandable.

The semantic problem has wide ramifications if one thinks of 
communication in general. Consider, for example, the meaning to 
a Russian of a U.S. newsreel picture.

The effectiveness problems are concerned with the success with 
which the meaning conveyed to the receiver leads to the desired 
conduct on his part. It may seem at first glance undesirably 
narrow to imply that the purpose of all communication is to influ­
ence the conduct of the receiver. But with any reasonably broad 
definition of conduct, it is clear that communication either affects 
conduct or is without any discernible and probable effect at all.

The problem of effectiveness involves aesthetic considerations 
in the case of the fine arts. In the case of speech, written or oral, 
it involves considerations which range all the way from the mere 
mechanics of style, through all the psychological and emotional 
aspects of propaganda theory, to those value judgments which are 
necessary to give useful meaning to the words “ success” and 
“ desired” in the opening sentence of this section on effectiveness.

The effectiveness problem is closely interrelated with the se­
mantic problem, and overlaps it in a rather vague way; and

2 “ When Pfungst (1911) demonstrated that the horses of Elberfeld, who 
were showing marvelous linguistic and mathematical ability, were merely 
reacting to movements of the trainer’s head, M r. Krall (1911), their owner, 
met the criticism in the most direct manner. He asked the horses whether 
they could see such small movements and in answer they spelled out an 
emphatic ‘N o .’ Unfortunately we cannot all be so sure that our questions 
are understood or obtain such clear answers.” See Lashley, K . S., “ Per­
sistent Problems in the Evolution of M ind” in Quarterly Review  of Biology, 
v. 24, March, 1949, p. 28.



there is in fact overlap between all of the suggested categories of 
problems.

1.3. Comments
So stated, one would be inclined to think that Level A is a rela­
tively superficial one, involving only the engineering details of 
good design of a communication system; while B and C seem to 
contain most if not all of the philosophical content of the general 
problem of communication.

The mathematical theory of the engineering aspects of com­
munication, as developed chiefly by Claude Shannon at the Bell 
Telephone Laboratories, admittedly applies in the first instance 
only to problem A, namely, the technical problem of accuracy of 
transference of various types of signals from sender to receiver. 
But the theory has, I think, a deep significance which proves that 
the preceding paragraph is seriously inaccurate. Part of the sig­
nificance of the new theory comes from the fact that levels B and 
C, above, can make use only of those signal accuracies which turn 
out to be possible when analyzed at Level A. Thus any limita­
tions discovered in the theory at Level A necessarily apply to 
levels B and C. But a larger part of the significance comes from 
the fact that the analysis at Level A discloses that this level over­
laps the other levels more than one could possible naively suspect. 
Thus the theory of Level A is, at least to a significant degree, also 
a theory of levels B and C. I hope that the succeeding parts of 
this memorandum will illuminate and justify these last remarks.

2
Communication Problems at Level A

2.1. A Communication System and Its Problems
The communication system considered may be symbolically rep­
resented as follows:



INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

NOISE
SOURCE

The information source selects a desired message out of a set of 
possible messages (this is a particularly important remark, which 
requires considerable explanation later). The selected message 
may consist of written or spoken words, or of pictures, music, etc.

The transmitter changes this message into the signal which is 
actually sent over the communication channel from the transmit­
ter to the receiver. In the case of telephony, the channel is a wire, 
the signal a varying electrical current on this wire; the trans­
mitter is the set of devices (telephone transmitter, etc.) which 
change the sound pressure of the voice into the varying electrical 
current. In telegraphy, the transmitter codes written words into 
sequences of interrupted currents of varying lengths (dots, dashes, 
spaces). In oral speech, the information source is the brain, the 
transmitter is the voice mechanism producing the varying sound 
pressure (the signal) which is transmitted through the air (the 
channel). In radio, the channel is simply space (or the aether, if 
any one still prefers that antiquated and misleading word), and 
the signal is the electromagnetic wave which is transmitted.

The receiver is a sort of inverse transmitter, changing the trans­
mitted signal back into a message, and handing this message on 
to the destination. When I talk to you, my brain is the informa­
tion source, yours the destination; my vocal system is the trans­
mitter, and your ear and the associated eighth nerve is the 
receiver.

In the process of being transmitted, it is unfortunately charac­
teristic that certain things are added to the signal which were not 
intended by the information source. These unwanted additions



may be distortions of sound (in telephony, for example) or static 
(in radio), or distortions in shape or shading of picture (tele­
vision), or errors in transmission (telegraphy or facsimile), etc. 
All of these changes in the transmitted signal are called noise.

The kind of questions which one seeks to ask concerning such 
a communication system are:

a. How does one measure amount of information?
b. How does one measure the capacity of a communication 

channel?
c. The action of the transmitter in changing the message into 

the signal often involves a coding process. What are the charac­
teristics of an efficient coding process? And when the coding is 
as efficient as possible, at what rate can the channel convey 
information?

d. What are the general characteristics of noise? How does 
noise affect the accuracy of the message finally received at the 
destination? How can one minimize the undesirable effects of 
noise, and to what extent can they be eliminated?

e. If the signal being transmitted is continuous (as in oral 
speech or music) rather than being formed of discrete symbols 
(as in written speech, telegraphy, etc.), how does this fact affect 
the problem?

We will now state, without any proofs and with a minimum 
of mathematical terminology, the main results which Shannon has 
obtained.

2.2. Information
The word information, in this theory, is used in a special sense 
that must not be confused with its ordinary usage. In particular, 
information must not be confused with meaning.

In fact, two messages, one of which is heavily loaded with 
meaning and the other of which is pure nonsense, can be exactly 
equivalent, from the present viewpoint, as regards information. 
It is this, undoubtedly, that Shannon means when he says that 
“ the semantic aspects of communication are irrelevant to the en­
gineering aspects.” But this does not mean that the engineering 
aspects are necessarily irrelevant to the semantic aspects.

To be sure, this word information in communication theory 
relates not so much to what you do say, as to what you could say.



That is, information is a measure of one's freedom of choice when 
one selects a message. If one is confronted with a very elementary 
situation where he has to choose one of two alternative messages, 
then it is arbitrarily said that the information, associated with 
this situation, is unity. Note that it is misleading (although often 
convenient) to say that one or the other message, conveys unit 
information. The concept of information applies not to the indi­
vidual messages (as the concept of meaning would), but rather 
to the situation as a whole, the unit information indicating that 
in this situation one has an amount of freedom of choice, in 
selecting a message, which it is convenient "to regard as a standard 
or unit amount.

The two messages between which one must choose, in such a 
selection, can be anything one likes. One might be the text of the 
King James Version of the Bible, and the other might be “ Yes.” 
The transmitter might code these two messages so that “ zero” is 
the signal for the first, and “ one” the signal for the second; or so 
that a closed circuit (current flowing) is the signal for the first, 
and an open circuit (no current flowing) the signal for the sec­
ond. Thus the two positions, closed and open, of a simple relay, 
might correspond to the two messages.

To be somewhat more definite, the amount of information is 
defined, in the simplest cases, to be measured by the logarithm of 
the number of available choices. It being convenient to use log­
arithms3 to the base 2, rather than common or Briggs' logarithm 
to the base 10, the information, when there are only two choices, 
is proportional to the logarithm of 2 to the base 2. But this is 
unity; so that a two-choice situation is characterized by informa­
tion of unity, as has already been stated above. This unit of 
information is called a “ bit,” this word, first suggested by John 
W. Tukey, being a condensation of “ binary digit.” When num­
bers are expressed in the binary system there are only two digits, 
namely 0 and 1; just as ten digits, 0 to 9 inclusive, are used in 
the decimal number system which employs 10 as a base. Zero 
and one may be taken symbolically to represent any two choices, 
as noted above; so that “ binary digit” or “ bit” is natural to asso­
ciate with the two-choice situation which has unit information.

If one has available say 16 alternative messages among which

* When m® =  y> then x  is said to be the logarithm of y  to the base m.



he is equally free to choose, then since 16 — 24 so that log2 16 =  4, 
one says that this situation is characterized by 4 bits of infor­
mation.

It doubtless seems queer, when one first meets it, that informa­
tion is defined as the logarithm of the number of choices. But in 
the unfolding of the theory, it becomes more and more obvious 
that logarithmic measures are in fact the natural ones. At the 
moment, only one indication of this will be given. It was men­
tioned above that one simple on-or-off relay, with its two posi­
tions labeled, say, 0 and 1 respectively, can handle a unit infor­
mation situation, in which there are but two message choices. If 
one relay can handle unit information, how much can be handled 
by say three relays? It seems very reasonable to want to say 
that three relays could handle three times as much information 
as one. And this indeed is the way it works out if one uses the 
logarithmic definition of information. For three relays are capa­
ble of responding to 23 or 8 choices, which symbolically might be 
written as 000, 001, Oil, 010, 100, 110, 101, 111, in the first of 
which all three relays are open, and in the last of which all three 
relays are closed. And the logarithm to the base 2 of 23 is 3, so 
that the logarithmic measure assigns three units of information 
to this situation, just as one would wish. Similarly, doubling the 
available time squares the number of possible messages, and 
doubles the logarithm; and hence doubles the information if it is 
measured logarithmically.

The remarks thus far relate to artificially simple situations 
where the information source is free to choose only between sev­
eral definite messages — like a man picking out one of a set of 
standard birthday greeting telegrams. A more natural and more 
important situation is that in which the information source makes 
a sequence of choices from some set of elementary symbols, the 
selected sequence then forming the message. Thus a man may 
pick out one word after another, these individually selected words 
then adding up to form the message.

At this point an important consideration which has been in the 
background, so far, comes to the front for major attention. 
Namely, the role which probability plays in the generation of the 
message. For as the successive symbols are chosen, these choices 
are, at least from the point of view of the communication system,



governed by probabilities; and in fact by probabilities which are 
not independent, but which, at any stage of the process, depend 
upon the preceding choices. Thus, if we are concerned with 
English speech, and if the last symbol chosen is “ the,” then the 
probability that the next word be an article, or a verb form other 
than a verbal, is very small. This probabilistic influence stretches 
over more than two words, in fact. After the three words “ in the 
event” the probability for “ that” as the next word is fairly high, 
and for “ elephant” as the next word is very low.

That there are probabilities which exert a certain degree of con­
trol over the English language also becomes obvious if one thinks, 
for example, of the fact that in our language the dictionary con­
tains no words whatsoever in which the initial letter j is followed 
by b, c, d, f, g, j, k, 1, q, r, t, v, w, x, or z; so that the probability 
is actually zero that an initial j be followed by any of these 
letters. Similarly, anyone would agree that the probability is low 
for such a sequence of words as “ Constantinople fishing nasty 
pink.” Incidentally, it is low, but not zero; for it is perfectly 
possible to think of a passage in which one sentence closes with 
“ Constantinople fishing,” and the next begins with “ Nasty pink.” 
And we might observe in passing that the unlikely four-word 
sequence under discussion has occurred in a single good English 
sentence, namely the one above.

A system which produces a sequence of symbols (which may, 
of course, be letters or musical notes, say, rather than words) 
according to certain probabilities is called a stochastic process, 
and the special case of a stochastic process in which the proba­
bilities depend on the previous events, is called a Markoff process 
or a Markoff chain. Of the Markoff processes which might con­
ceivably generate messages, there is a special class which is of 
primary importance for communication theory, these being what 
are called ergodic processes. The analytical details here are com­
plicated and the reasoning so deep and involved that it has taken 
some of the best efforts of the best mathematicians to create the 
associated theory; but the rough nature of an ergodic process is 
easy to understand. It is one which produces a sequence of sym­
bols which would be a poll-taker’s dream, because any reasonably 
large sample tends to be representative of the sequence as a 
whole. Suppose that two persons choose samples in different



ways, and study what trends their statistical properties would 
show as the samples become larger. If the situation is ergodic, 
then those two persons, however they may have chosen their 
samples, agree in their estimates of the properties of the whole. 
Ergodic systems, in other words, exhibit a particularly safe and 
comforting sort of statistical regularity.

Now let us return to the idea of information. When we have 
an information source which is producing a message by succes­
sively selecting discrete symbols (letters, words, musical notes, 
spots of a certain size, etc.), the probability of choice of the 
various symbols at one stage of the process being dependent on 
the previous choices (i.e., a Markoff process), what about the 
information associated with this procedure?

The quantity which uniquely meets the natural requirements 
that one sets up for “ information” turns out to be exactly that 
which is known in thermodynamics as entropy. It is expressed in 
terms of the various probabilities involved —  those of getting to 
certain stages in the process of forming messages, and the proba­
bilities that, when in those stages, certain symbols be chosen 
next. The formula, moreover, involves the logarithm of probabil­
ities, so that it is a natural generalization of the logarithmic 
measure spoken of above in connection with simple cases.

To those who have studied the physical sciences, it is most 
significant that an entropy-like expression appears in the theory 
as a measure of information. Introduced by Clausius nearly one 
hundred years ago, closely associated with the name of Boltz­
mann, and given deep meaning by Gibbs in his classic work on 
statistical mechanics, entropy has become so basic and pervasive 
a concept that Eddington remarks “ The law that entropy always 
increases —  the second law of thermodynamics —  holds, I think, 
the supreme position among the laws of Nature.”

In the physical sciences, the entropy associated with a situa­
tion is a measure of the degree of randomness, or of “ shuffled- 
ness” if you will, in the situation; and the tendency of physical 
systems to become less and less organized, to become more and 
more perfectly shuffled, is so basic that Eddington argues that 
it is primarily this tendency which gives time its arrow —  which 
would reveal to us, for example, whether a movie of the physical 
world is being run forward or backward.



Thus when one meets the concept of entropy in communication 
theory, he has a right to be rather excited —  a right to suspect 
that one has hold of something that may turn out to be basic and 
important. That information be measured by entropy is, after all, 
natural when we remember that information, in communication 
theory, is associated with the amount of freedom of choice we 
have in constructing messages. Thus for a communication source 
one can say, just as he would also say it of a thermodynamic 
ensemble, “ This situation is highly organized, it is not character­
ized by a large degree of randomness or of choice —  that is to say, 
the information (or the entropy) is low.” We will return to this 
point later, for unless I am quite mistaken, it is an important 
aspect of the more general significance of this theory.

Having calculated the entropy (or the information, or the 
freedom of choice) of a certain information source, one can com­
pare this to the maximum value this entropy could have, subject 
only to the condition that the source continue to employ the same 
symbols. The ratio of the actual to the maximum entropy is 
called the relative entropy of the source. If the relative entropy 
of a certain source is, say .8, this roughly means that this source 
is, in its choice of symbols to form a message, about 80 per cent 
as free as it could possibly be with these same symbols. One 
minus the relative entropy is called the redundancy. This is the 
fraction of the structure of the message which is determined not 
by the free choice of the sender, but rather by the accepted 
statistical rules governing the use of the symbols in question. It 
is sensibly called redundancy, for this fraction of the message is 
in fact redundant in something close to the ordinary sense; that 
is to say, this fraction of the message is unnecessary (and hence 
repetitive or redundant) in the sense that if it were missing the 
message would still be essentially complete, or at least could be 
completed.

It is most interesting to note that the redundancy of English 
is just about 50 per cent,4 so that about half of the letters or 
words we choose in writing or speaking are under our free choice, 
and about half (although we are not ordinarily aware of it) are 
really controlled by the statistical structure of the language.

4 The 50 per cent estimate accounts only for statistical structure out to 
about eight letters, so that the ultimate value is presumably a little higher.



Apart from more serious implications, which again we will post­
pone to our final discussion, it is interesting to note that a 
language must have at least 50 per cent of real freedom (or 
relative entropy) in the choice of letters if one is to be able to 
construct satisfactory crossword puzzles. If it has complete free­
dom, then every array of letters is a crossword puzzle. If it has 
only 20 per cent of freedom, then it would be impossible to con­
struct crossword puzzles in such complexity and number as would 
make the game popular. Shannon has estimated that if the 
English language had only about 30 per cent redundancy, then 
it would be possible to construct three-dimensional crossword 
puzzles.

Before closing this section on information, it should be noted 
that the real- reason that Level A analysis deals with a concept of 
information which characterizes the whole statistical nature of 
the information source, and is not concerned with the individual 
messages (and not at all directly concerned with the meaning of 
the individual messages) is that from the point of view of engi­
neering, a communication system must face the problem of 
handling any message that the source can produce. If it is not 
possible or practicable to design a system which can handle 
everything perfectly, then the system should be designed to 
handle well the jobs it is most likely to be asked to do, and 
should resign itself to be less efficient for the rare task. This sort 
of consideration leads at once to the necessity of characterizing 
the statistical nature of the whole ensemble of messages which 
a given kind of source can and will produce. And informationy 
as used in communication theory, does just this.

Although it is not at all the purpose of this paper to be con­
cerned with mathematical details, it nevertheless seems essential 
to have as good an understanding as possible of the entropy-like 
expression which measures information. If one is concerned, as 
in a simple case, with a set of n independent symbols, or a set of n 
independent complete messages for that matter, whose probabili­
ties of choice are pi, p2* * * Pn, then the actual expression for 
the information is

H =  — [Vl log Pi +  p2 log p2 +  * * * +  Pn log Pn] , 
or

H =  — 2 Pi log Pi.



Where5 the symbol X indicates, as is usual in mathematics, that 
one is to sum all terms like the typical one, pi log pif written as 
a defining sample.

This looks a little complicated; but let us see how this expres­
sion behaves in some simple cases.

Suppose first that we are choosing only between two possible 
messages, whose probabilities are then pi for the first and p2 =  1 
— pi for the other. If one reckons, for this case, the numerical 
value of H, it turns out that H has its largest value, namely 
one, when the two messages are equally probable; that is to say 
when pi — p2 — J; that is to say, when one is completely free to 
choose between the two messages. Just as soon as one message 
becomes more probable than the other (px greater than p2, say), 
the value of H decreases. And when one message is very probable 
(pi almost one and p2 almost zero, say), the value of H is very 
small (almost zero).

In the limiting case where one probability is unity (certainty) 
and all the others zero (impossibility), then H is zero (no uncer­
tainty at all — no freedom of choice —  no information).

Thus H is largest when the two probabilities are equal (i.e., 
when one is completely free and unbiased in the choice), and 
reduces to zero when one’s freedom of choice is gone.

The situation just described is in fact typical. If there are 
many, rather than two, choices, then H is largest when the prob­
abilities of the various choices are as nearly equal as circum­
stances permit — when one has as much freedom as possible in 
making a choice, being as little as possible driven toward some 
certain choices which have more than their share of probability. 
Suppose, on the other hand, that one choice has a probability 
near one so that all the other choices have probabilities near 
zero. This is clearly a situation in which one is heavily influenced 
toward one particular choice, and hence has little freedom of 
choice. And H in such a case does calculate to have a very small 
value — the information (the freedom of choice, the uncertainty) 
is low.

When the number of cases is fixed, we have just seen that then

5 Do not worry about the minus sign. Any probability is a number less 
than or equal to one, and the logarithms of numbers less than one are 
themselves negative. Thus the minus sign is necessary in order that H  be 
in fact positive.



the information is the greater, the more nearly equal are the 
probabilities of the various cases. There is another important way 
of increasing H, namely by increasing the number of cases. More 
accurately, if all choices are equally likely, the more choices there 
are, the larger H will bet There is more “ information” if you 
select freely out of a set of fifty standard messages, than if you 
select freely out of a set of twenty-five.

2.3. Capacity of a Communication Channel
After the discussion of the preceding section, one is not surprised 
that the capacity of a channel is to be described not in terms of 
the number of symbols it can transmit, but rather in terms of the 
information it transmits. Or better, since this last phrase lends 
itself particularly well to a misinterpretation of the word infor­
mation, the capacity of a channel is to be described in terms of 
its ability to transmit what is produced out of source of a given 
information.

If the source is of a simple sort in which all symbols are of the 
same time duration (which is the case, for example, with tele­
type)? if the source is such that each symbol chosen represents 
s bits of information (being freely chosen from among 28 sym­
bols) , and if the channel can transmit, say h symbols per second, 
then the capacity of C of the channel is defined to be ns bits per 
second.

In a more general case, one has to take account of the varying 
lengths of the various symbols. Thus the general expression for 
capacity of a channel involves the logarithm of the numbers of 
symbols of certain time duration (which introduces, of course, 
the idea of information and corresponds to the factor s in the 
simple case of the preceding paragraph); and also involves 
the number of such symbols handled (which corresponds to the 
factor n of the preceding paragraph). Thus in the general case, 
capacity measures not the number of symbols transmitted per 
second, but rather the amount of information transmitted per 
second, using bits per second as its unit.

2.4. Coding
At the outset it was pointed out that the transmitter accepts the 
message and turns it into something called the signal, the latter 
being what actually passes over the channel to the receiver.



The transmitter, in such a case as telephony, merely changes 
the audible voice signal over into something (the varying elec­
trical current on the telephone wire) which is at once clearly 
different but clearly equivalent. But the transmitter may carry 
out a much more complex operation on the message to produce 
the signal. It could, for example, take a written message and use 
some code to encipher this message into, say a sequence of 
numbers; these numbers then being sent over the channel as the 
signal.

Thus one says, in general, that the function of the transmitter 
is to encode, and that of the receiver to decode, the message. The 
theory provides for very sophisticated transmitters and receivers 
— such, for example, as possess “ memories,” so that the way 
they encode a certain symbol of the message depends not only 
upon this one symbol, but also upon previous symbols of the 
message and the way they have been encoded.

We are now in a position to state the fundamental theorem, 
produced in this theory, for a noiseless channel transmitting 
discrete symbols. This theorem relates to a communication chan­
nel which has a capacity of C bits per second, accepting signals 
from a source of entropy (or information) of H  bits per second. 
The theorem states that by devising proper coding procedures 
for the transmitter it is possible to transmit symbols over the 
channel at an average rate6 which is nearly C/H, but which, no 
matter how clever the coding, can never be made to exceed C/H.

The significance of this theorem is to be discussed more use­
fully a little later, when we have the more general case when 
noise is present. For the moment, though, it is important to notice 
the critical role which coding plays.

Remember that the entropy (or information) associated with 
the process which generates messages or signals is determined by 
the statistical character of the process — by the various prob­
abilities for arriving at message situations and for choosing, when 
in those situations the next symbols. The statistical nature of 
messages is entirely determined by the character of the source.

6 W e remember that the capacity C  involves the idea of information trans­
mitted per second, and is thus measured in bits per second. The entropy H  
here measures information per symbol, so that the ratio of C  to H  measures 
symbols per second.



But the statistical character of the signal as actually transmitted 
by a channel, and hence the entropy in the channel, is deter­
mined both by what one attempts to feed into the channel and 
by the capabilities of the channel to handle different signal 
situations. For example, in telegraphy, there have to be spaces 
between dots and dots, between dots and dashes, and between 
dashes and dashes, or the dots and dashes would not be recog­
nizable.

Now it turns out that when a channel does have certain con­
straints of this sort, which limit complete signal freedom, there 
are certain statistical signal characteristics which lead to a signal 
entropy which is larger than it would be for any other statistical 
signal structure, and in this important case, the signal entropy 
is exactly equal to the channel capacity.

In terms of these ideas, it is now possible precisely to char­
acterize the most efficient kind of coding, The best transmitter, 
in fact, is that which codes the message in such a way that the 
signal has just those optimum statistical characteristics which 
are best suited to the channel to be used — which in fact maxi­
mize the signal (or one may say, the channel) entropy and make 
it equal to the capacity C of the channel.

This kind of coding leads, by the fundamental theorem above, 
to the maximum rate C/H for the transmission of symbols. But 
for this gain in transmission rate, one pays a price. For rather 
perversely it happens that as one makes the coding more and 
more nearly ideal, one is forced to longer and longer delays in 
the process of coding. Part of this dilemma is met by the fact that 
in electronic equipment “ long” may mean an exceedingly small 
fraction of a second, and part by the fact that one makes a 
compromise, balancing the gain in transmission rate against loss 
of coding time.

2.5. Noise
How does noise affect information? Information is, we must 
steadily remember, a measure of one’s freedom of choice in select­
ing a message. The greater this freedom of choice, and hence the 
greater the information, the greater is the uncertainty that the 
message actually selected is some particular one. Thus greater



freedom of choice, greater uncertainty, greater information go 
hand in hand.

If noise is introduced, then the received message contains 
certain distortions, certain errors, certain extraneous material, 
that would certainly lead one to say that the received message 
exhibits, because of the effects of the noise, an increased uncer­
tainty. But if the uncertainty is increased, the information is 
increased, and this sounds as though the noise were beneficial!

It is generally true that when there is noise, the received signal 
exhibits greater information —  or better, the received signal is 
selected out of a more varied set than is the transmitted signal. 
This is a situation which beautifully illustrates the semantic trap 
into which one can fall if he does not remember that “ informa­
tion” is used here with a special meaning that measures freedom 
of choice and hence uncertainty as to what choice has been made. 
It is therefore possible for the word information to have either 
good or bad connotations. Uncertainty which arises by virtue of 
freedom of choice on the part of the sender is desirable uncer­
tainty. Uncertainty which arises because of errors or because of 
the influence of noise is undesirable uncertainty.

It is thus clear where the joker is in saying that the received 
signal has more information. Some of this information is spurious 
and undesirable and has been introduced via the noise. To get 
the useful information in the received signal we must subtract 
out this spurious portion.

Before we can clear up this point we have to stop for a little 
detour. Suppose one has two sets of symbols, such as the message 
symbols generated by the information source, and the signal 
symbols which are actually received. The probabilities of these 
two sets of symbols are interrelated, for clearly the probability 
of receiving a certain symbol depends upon what symbol was 
sent. With no errors from noise or from other causes, the received 
signals would correspond precisely to the message symbols sent; 
and in the presence of possible error, the probabilities for received 
symbols would obviously be loaded heavily on those which cor­
respond, or closely correspond, to the message symbols sent.

Now in such a situation one can calculate what is called the 
entropy of one set of symbols relative to the other. Let us, for 
example, consider the entropy of the message relative to the



signal. It is unfortunate that we cannot understand the issues 
involved here without going into some detail. Suppose for the 
moment that one knows that a certain signal symbol has actually 
been received. Then each message symbol takes on a certain 
probability —  relatively large for the symbol identical with or the 
symbols similar to the one received, and relatively small for all 
others. Using this set of probabilities, one calculates a tentative 
entropy value. This is the message entropy on the assumption 
of a definite known received or signal symbol. Under any good 
conditions its value is low, since the probabilities involved are 
not spread around rather evenly on the various cases, but are 
heavily loaded on one or a few cases. Its value would be zero 
(see page 13) in any case where noise was completely absent, 
for then, the signal symbol being known, all message probabilities 
would be zero except for one symbol (namely the one received), 
which would have a probability of unity.

For each assumption as to the signal symbol received, one can 
calculate one of these tentative message entropies. Calculate all 
of them, and then average them, weighting each one in accordance 
with the probability of the signal symbol assumed in calculating 
it. Entropies calculated in this way, when there are two sets of 
symbols to consider, are called relative entropies. The particular 
one just described is the entropy of the message relative to the 
signal, and Shannon has named this also the equivocation.

From the way this equivocation is calculated, we can see what 
its significance is. It measures the average uncertainty in the 
message when the signal is known. If there were no noise, then 
there would be no uncertainty concerning the message if the 
signal is known. If the information source has any residual 
uncertainty after the signal is known, then this must be unde­
sirable uncertainty due to noise.

The discussion of the last few paragraphs centers around the 
quantity “ the average uncertainty in the message source when the 
received signal is known.” It can equally well be phrased in terms 
of the similar quantity “ the average uncertainty concerning the 
received signal when the message sent is known.” This latter 
uncertainty would, of course, also be zero if there were no noise.

As to the interrelationship of these quantities, it is easy to 
prove that

H(x)  — Hy(x) = H ( y ) - H x(y)



where H(x)  is the entropy or information of the source of mes­
sages; H( y)  the entropy or information of received signals; 
Hy(x) the equivocation, or the uncertainty in the message source 
if the signal be known; Hx(y) the uncertainty in the received 
signals if the messages sent be known, or the spurious part of the 
received signal information which is due to noise. The right side 
of this equation is the useful information which is transmitted in 
spite of the bad effect of the noise.

It is now possible to explain what one means by the capacity 
C of a noisy channel. It is, in fact, defined to be equal to the 
maximum rate (in bits per second) at which useful information 
(i.e., total uncertainty minus noise uncertainty) can be trans­
mitted over the channel.

Why does one speak, here, of a “ maximum” rate? What can 
one do, that is, to make this rate larger or smaller? The answer 
is that one can affect this rate by choosing a source whose 
statistical characteristics are suitably related to the restraints 
imposed by the nature of the channel. That is, one can maximize 
the rate of transmitting useful information by using proper coding 
(see pages 16-17).

And now, finally, let us consider the fundamental theorem for 
a noisy channel. Suppose that this noisy channel has, in the sense 
just described, a capacity C, suppose it is accepting from an 
information source characterized by an entropy of H(x)  bits 
per second, the entropy of the received signals being H{ y)  bits 
per second. If the channel capacity C is equal to or larger than 
H(x) ,  then by devising appropriate coding systems, the output 
of the source can be transmitted over the channel with as little 
error as one pleases. However small a frequency of error you 
specify, there is a code which meets the demand. But if the 
channel capacity C is less than H(x) ,  the entropy of the source 
from which it accepts messages, then it is impossible to devise 
codes which reduce the error frequency as low as one may please.

However clever one is with the coding process, it will always 
be true that after the signal is received there remains some un­
desirable (noise) uncertainty about what the message was; and 
this undesirable uncertainty — this equivocation — will always 
be equal to or greater than H(x)  — C. Furthermore, there is 
always at least one code which is capable of reducing this



undesirable uncertainty, concerning the message, down to a value 
which exceeds H(x)  — C by an arbitrarily small amount.

The most important aspect, of course, is that the minimum 
undesirable or spurious uncertainties cannot be reduced further, 
no matter how complicated or appropriate the coding process. 
This powerful theorem gives a precise and almost startlingly 
simple description of the utmost dependability one can ever 
obtain from a communication channel which operates in the 
presence of noise.

One practical consequence, pointed out by Shannon, should be 
noted. Since English is about 50 per cent redundant, it would 
be possible to save about one-half the time of ordinary telegraphy 
by a proper encoding process, provided one were going to transmit 
over a noiseless channel. When there is noise on a channel, how­
ever, there is some real advantage in not using a coding process 
that eliminates all of the redundancy. For the remaining redun­
dancy helps combat the noise. This is very easy to see, for just 
because of the fact that the redundancy of English is high, one 
has, for example, little or no hesitation about correcting errors in 
spelling that have arisen during transmission.

2.6. Continuous Messages
Up to this point we have been concerned with messages formed 
out of discrete symbols, as words are formed of letters, sentences 
of words, a melody of notes, or a halftone picture of a finite 
number of discrete spots. What happens to the theory if one 
considers continuous messages, such as the speaking voice with its 
continuous variation of pitch and energy?

Very roughly one may say that the extended theory is some­
what more difficult and complicated mathematically, but not 
essentially different. Many of the above statements for the 
discrete case require no modification, and others require only 
minor change.

One circumstance which helps a good deal is the following. As 
a practical matter, one is always interested in a continuous 
signal which is built up of simple harmonic constituents of not all 
frequencies, but rather of frequencies which lie wholly within 
a band from zero frequency to, say, a frequency of W cycles per 
second. Thus although the human voice does contain higher fre­



quencies, very satisfactory communication can be achieved over 
a telephone channel that handles frequencies only up to, say four 
thousand. With frequencies up to ten or twelve thousand, high 
fidelity radio transmission of symphonic music is possible, etc.

There is a very convenient mathematical theorem which states 
that a continuous signal, T seconds in duration and band-limited 
in frequency to the range from 0 to W , can be completely speci­
fied by stating 2TW  numbers. This is really a remarkable 
theorem. Ordinarily a continuous curve can be only approxi­
mately characterized by stating any finite number of points 
through which it passes, and an infinite number would in general 
be required for complete information about the curve. But if the 
curve is built up out of simple harmonic constituents of a limited 
number of frequencies, as a complex sound is built up out of a 
limited number of pure tones, then a finite number of parameters 
is all that is necessary. This has the powerful advantage of 
reducing the character of the communication problem for con­
tinuous signals from a complicated situation where one would 
have to deal with an infinite number of variables to a consider­
ably simpler situation where one deals with a finite (though 
large) number of variables.

In the theory for the continuous case there are developed 
formulas which describe the maximum capacity C of a channel of 
frequency bandwidth W, when the average power used in trans­
mitting is P, the channel being subject to a noise of power N, 
this noise being “ white thermal noise” of a special kind which 
Shannon defines. This white thermal noise is itself band limited 
in frequency, and the amplitudes of the various frequency con­
stituents are subject to a normal (Gaussian) probability distri­
bution. Under these circumstances, Shannon obtains the theorem, 
again really quite remarkable in its simplicity and its scope, 
that it is possible, by the best coding, to transmit binary digits at 
the rate of

W log2 P +  N 
N

bits per second and have an arbitrarily low frequency of error. 
But this rate cannot possibly be exceeded, no matter how clever 
the coding, without giving rise to a definite frequency of errors. 
For the case of arbitrary noise, rather than the special “ white



thermal” noise assumed above, Shannon does not succeed in 
deriving one explicit formula for channel capacity, but does ob­
tain useful upper and lower limits for channel capacity. And he 
also derives limits for channel capacity when one specifies not 
the average power of the transmitter, but rather the peak 
instantaneous power.

Finally it should be stated that Shannon obtains results which 
are necessarily somewhat less specific, but which are of obviously 
deep and sweeping significance, which, for a general sort of con­
tinuous message or signal, characterize the fidelity of the received 
message, and the concepts of rate at which a source generates 
information, rate of transmission, and channel capacity, all of 
these being relative to certain fidelity requirements.

3
The Interrelationship of the Three Levels 
of Communication Problems

3.1. Introductory
In the first section of this paper it was suggested that there are 
three levels at which one may consider the general communication 
problem. Namely, one may ask:
Level A. How accurately can the symbols of communication be 

transmitted?
Level B. H ow precisely do the transmitted symbols convey the 

desired meaning?

Level C. H ow effectively does the received meaning affect con­
duct in the desired way?

It was suggested that the mathematical theory of communica­
tion, as developed by Shannon, Wiener, and others, and particu­
larly the more definitely engineering theory treated by Shannon, 
although ostensibly applicable only to Level A problems, actu­
ally is helpful and suggestive for the level B and C problems.



We then took a look, in section 2, at what this mathematical 
theory is, what concepts it develops, what results it has obtained. 
It is the purpose of this concluding section to review the situa­
tion, and see to what extent and in what terms the original 
section was justified in indicating that the progress made at Level 
A is capable of contributing to levels B and C, was justified in 
indicating that the interrelation of the three levels is so con­
siderable that one’s final conclusion may be that the separation 
into the three levels is really artificial and undesirable.

3.2. Generality of the Theofy at Level A
The obvious first remark, and indeed the remark that carries the 
major burden of the argument, is that the mathematical theory 
is exceedingly general in its scope, fundamental in the problems 
it treats, and of classic simplicity and power in the results it 
reaches.

This is a theory so general that one does not need to say what 
kinds of symbols are being considered —  whether written letters 
or words, or musical notes, or spoken words, or symphonic music, 
or pictures. The theory is deep enough so that the relationships it 
reveals indiscriminately apply to all these and to other forms of 
communication. This means, of course, that the theory is suffi­
ciently imaginatively motivated so that it is dealing with the 
real inner core of the communication problem —  with those basic 
relationships which hold in general, no matter what special form 
the actual case may take.

It is an evidence of this generality that the theory contributes 
importantly to, and in fact is really the basic theory of cryptog­
raphy which is, of course, a form of coding. In a similar way, 
the theory contributes to the problem of translation from one 
language to another, although the complete story here clearly 
requires consideration of meaning, as well as of information. 
Similarly, the ideas developed in this work connect so closely 
with the problem of the logical design of great computers that 
it is no surprise that Shannon has just written a paper on the 
design of a computer which would be capable of playing a 
skillful game of chess. And it is of further direct pertinence to 
the present contention that this paper closes with the remark 
that either one must say that such a computer “ thinks,” or one



must substantially modify the conventional implication of the 
verb “ to think.”

As a second point, it seems clear that an important contribu­
tion has been made to any possible general theory of communica­
tion by the formalization on which the present theory is based. 
It seems at first obvious to diagram a communication system as 
it is done at the outset of this theory; but this breakdown of the 
situation must be very deeply sensible and appropriate, as one 
becomes convinced when he sees how smoothly and generally this 
viewpoint leads to central issues. It is almost certainly true that 
a consideration of communication on levels B and C will require 
additions to the schematic diagram on page 7, but it seems 
equally likely that what is required are minor additions, and no 
real revision.

Thus when one moves to levels B and C, it may prove to be 
essential to take account of the statistical characteristics of the 
destination. One can imagine, as an addition to the diagram, 
another box labeled “ Semantic Receiver” interposed between the 
engineering receiver (which changes signals to messages) and the 
destination. This semantic receiver subjects the message to a 
second decoding, the demand on this one being that it must 
match the statistical semantic characteristics of the message to 
the statistical semantic capacities of the totality of receivers, or 
of that subset of receivers which constitute the audience one 
wishes to affect.

Similarly one can imagine another box in the diagram which, 
inserted between the information source and the transmitter, 
would be labeled “ semantic noise,” the box previously labeled as 
simply “ noise” now being labeled “ engineering noise.” From this 
source is imposed into the signal the perturbations or distortions 
of meaning which are not intended by the source but which 
inescapably affect the destination. And the problem of semantic 
decoding must take this semantic noise into account. It is also 
possible to think of an adjustment of original message so that the 
sum of message meaning plus semantic noise is equal to the 
desired total message meaning at the destination.

Thirdly, it seems highly suggestive for the problem at all levels 
that error and confusion arise and fidelity decreases, when, no 
matter how good the coding, one tries to crowd too much over a



channel (i.e., H >  C). Here again a general theory at all levels 
will surely have to take into account not only the capacity of the 
channel but also (even the words are right!) the capacity of the 
audience. If one tries to overcrowd the capacity of the audience, 
it is probably true, by direct analogy, that you do not, so to 
speak, fill the audience up and then waste only the remainder by 
spilling. More likely, and again by direct analogy, if you over­
crowd the capacity of the audience you force a general and 
inescapable error and confusion.

Fourthly, it is hard to believe that levels B and C do not have 
much to learn from, and do not have the approach to their 
problems usefully oriented by, the development in this theory 
of the entropic ideas in relation to the concept of information.

The concept of information developed in this theory at first 
seems disappointing and bizarre —  disappointing because it has 
nothing to do with meaning, and bizarre because it deals not 
with a single message but rather with the statistical character of 
a whole ensemble of messages, bizarre also because in these sta­
tistical terms the two words information and uncertainty find 
themselves to be partners.

I think, however, that these should be only temporary reac­
tions; and that one should say, at the end, that this analysis has 
so penetratingly cleared the air that one is now, perhaps for the 
first time, ready for a real theory of meaning. An engineering 
communication theory is just like a very proper and discreet girl 
accepting your telegram. She pays no attention to the meaning, 
whether it be sad, or joyous, or embarrassing. But she must be 
prepared to deal with all that come to her desk. This idea that a 
communication system ought to try to deal with all possible 
messages, and that the intelligent way to try is to base design on 
the statistical character of the source, is surely not without 
significance for communication in general. Language must be 
designed (or developed) with a view to the totality of things that 
man may wish to say; but not being able to accomplish every­
thing, it too should do as well as possible as often as possible. 
That is to say, it too should deal with its task statistically.

The concept of the information to be associated with a source 
leads directly, as we have seen, to a study of the statistical struc­
ture of language; and this study reveals about the English lan­



guage, as an example, information which seems surely significant 
to students of every phase of language and communication. The 
idea of utilizing the powerful body of theory concerning Markoff 
processes seems particularly promising for semantic studies, since 
this theory is specifically adapted to handle one of the most sig­
nificant but difficult aspects of meaning, namely the influence of 
context. One has the vague feeling that information and meaning 
may prove to be something like a pair of canonically conjugate 
variables in quantum theory, they being subject to some joint 
restriction that condemns a person to the sacrifice of the one as 
he insists on having much of the other.

Or perhaps meaning may be shown to be analogous to one of 
the quantities on which the entropy of a thermodynamic ensemble 
depends. The appearance of entropy in the theory, as was re­
marked earlier, is surely most interesting and significant. Edding­
ton has already been quoted in this connection, but there is 
another passage in “ The Nature of the Physical World” which 
seems particularly apt and suggestive:

Suppose that we were asked to arrange the following in two cate­
gories — distance, mass, electric force, entropy, beauty, melody.

I think there are the strongest grounds for placing entropy along­
side beauty and melody, and not with the first three. Entropy is only 
found when the parts are viewed in association, and it is by viewing 
or hearing the parts in association that beauty and melody are dis­
cerned. All three are features of arrangement. It is a pregnant 
thought that one of these three associates should be able to figure as 
a commonplace quantity of science. The reason why this stranger 
can pass itself off among the aborigines of the physical world is that 
it is able to speak their language, viz., the language of arithmetic.
I feel sure that Eddington would have been willing to include 

the word meaning along with beauty and melody; and I suspect 
he would have been thrilled to see, in this theory, that entropy 
not only speaks the language of arithmetic; it also speaks the 
language of language.
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Introduction

The recent development of various methods of modulation such 
as PCM and PPM which exchange bandwidth for signal-to-noise 
ratio has intensified the interest in a general theory of communi­
cation. A basis for such a theory is contained in the important 
papers of Nyquist1 and Hartley1 2 on this subject. In the present 
paper we will extend the theory to include a number of new 
factors, in particular the effect of noise in the channel, and the 
savings possible due to the statistical structure of the original 
message and due to the nature of the final destination of the 
information.

The fundamental problem of communication is that of repro­
ducing at one point either exactly or approximately a message 
selected at another point. Frequently the messages have meaning; 
that is they refer to or are correlated according to some system 
with certain physical or conceptual entities. These semantic 
aspects of communication are irrelevant to the engineering prob­
lem. The significant aspect is that the actual message is one 
selected from a set of possible messages. The system must be 
designed to operate for each possible selection, not just the one 
which will actually be chosen since this is unknown at the time 
of design.

1 Nyquist, H., “Certain Factors Affecting Telegraph Speed,” Bell System  
Technical Journal, April 1924, p. 324; “Certain Topics in Telegraph Trans­
mission Theory,” A .I.E .E . Trans., v. 47, April 1928, p. 617.
2 Hartley, R. V. L., “Transmission of Information,” Bell System  Technical 
Journal, July 1928, p. 535.



If the number of messages in the set is finite then this number 
or any monotonie function of this number can be regarded as a 
measure of the information produced when one message is chosen 
from the set, all choices being equally likely. As was pointed out 
by Hartley the most natural choice is the logarithmic function. 
Although this definition must be generalized considerably when 
we consider the influence of the statistics of the message and 
when we have a continuous range of messages, we will in all 
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various 
reasons:

1. It is practically more useful. Parameters of engineering 
importance such as time, bandwidth, number of relays, etc., tend 
to vary linearly with the logarithm of the number of possibilities. 
For example, adding one relay to a group doubles the number of 
possible states of the relays. It adds 1 to the base 2 logarithm 
of this number. Doubling the time roughly squares the number of 
possible messages, or doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. 
This is closely related to (1) since we intuitively measure 
entities by linear comparison with common standards. One feels, 
for example, that two punched cards should have twice the 
capacity of one for information storage, and two identical chan­
nels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting 
operations are simple in terms of the logarithm but would require 
clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of 
a unit for measuring information. If the base 2 is used the 
resulting units may be called binary digits, or more briefly bits, a 
word suggested by J. W. Tukey. A device with two stable posi­
tions, such as a relay or a flip-flop circuit, can store one bit of 
information. N  such devices can store N bits, since the total 
number of possible states is 2N and log2 2N =  N. If the base 10 is 
used the units may be called'decimal digits. Since

log2 M  =  log10 M /logio 2 
— 3.32 logio M ,



a decimal digit is about 3J bits. A digit wheel on a desk com­
puting machine has ten stable positions and therefore has a 
storage capacity of one decimal digit. In analytical work where 
integration and differentiation are involved the base e is some­
times useful. The resulting units of information will be called 
natural units. Change from the base a to base b merely requires 
multiplication by log*, a.

By a communication system we will mean a system of the 
type indicated schematically in Fig. 1. It consists of essentially 
five parts:

1. An information source which produces a message or sequence 
of messages to be communicated to the receiving terminal. The 
message may be of various types: (a) A sequence of letters as 
in a telegraph or teletype system; (b) A single function of time 
f(t)  as in radio or telephony; (c) A function of time and other 
variables as in black and white television —  here the message 
may be thought of as a function /  (x, y, t) of two space coordi­
nates and time, the light intensity at point (x, y)  and time t on a 
pickup tube plate; (d) Two or more functions of time, say 
/ ( 0 ,  g(t),  h(t) — this is the case in “ three-dimensional” sound 
transmission or if the system is intended to service several indi­
vidual channels in multiplex; (e) Several functions of several 
variables — in color television the message consists of three 
functions f { x , y } t), g(x, y> t), h(x, y, t) defined in a three- 
dimensional continuum — we may also think of these three func­
tions as components of a vector field defined in the region —  
similarly, several black and white television sources would pro­
duce “ messages” consisting of a number of functions of three 
variables; (f) Various combinations also occur, for example in 
television with an associated audio channel.

2. A transmitter which operates on the message in some way to 
produce a signal suitable for transmission over the channel. In 
telephony this operation consists merely of changing sound pres­
sure into a proportional electrical current. In telegraphy we have 
an encoding operation which produces a sequence of dots, dashes 
and spaces on the channel corresponding to the message. In a 
multiplex PCM system the different speech functions must be 
sampled, compressed, quantized and encoded, and finally inter-
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Fig. 1. —  Schematic diagram of a general communication system.

leaved properly to construct the signal. Vocoder systems, tele­
vision and frequency modulation are other examples of complex 
operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the 
signal from transmitter to receiver. It may be a pair of wires, a 
coaxial cable, a band of radio frequencies, a beam of light, etc. 
During transmission, or at one of the terminals, the signal may 
be perturbed by noise. This is indicated schematically in Fig. 1 
by the noise source acting on the transmitted signal to produce 
the received signal.

4. The receiver ordinarily performs the inverse operation of 
that done by the transmitter, reconstructing the message from 
the signal.

5. The destination is the person (or thing) for whom the mes­
sage is intended.

We wish to consider certain general problems involving com­
munication systems. To do this it is first necessary to represent 
the various elements involved as mathematical entities, suitably 
idealized from their physical counterparts. We may roughly 
classify communication systems into three main categories: 
discrete, continuous and mixed. By a discrete system we will 
mean one in which both the message and the signal are a sequence 
of discrete symbols. A typical case is telegraphy where the mes­
sage is a sequence of letters and the signal a sequence of dots, 
dashes and spaces. A continuous system is one in which the



message and signal are both treated as continuous functions, 
e.g., radio or television. A mixed system is one in which both 
discrete and continuous variables appear, e.g., PCM transmission 
of speech.

We first consider the discrete case. This case has applications 
not only in communication theory, but also in the theory of 
computing machines, the design of telephone exchanges and other 
fields. In addition the discrete case forms a foundation for the 
continuous and mixed cases which will be treated in the second 
half of the paper.



Discrete Noiseless Systems

1. The Discrete Noiseless Channel

Teletype and telegraphy are two simple examples of a discrete 
channel for transmitting information. Generally, a discrete chan­
nel will mean a system whereby a sequence of choices from a 
finite set of elementary symbols St • • • Sn can be transmitted 
from one point to another. Each of the symbols Si is assumed to 
have a certain duration in time ti seconds (not necessarily the 
same for different Si, for example the dots and dashes in teleg­
raphy). It is not required that all possible sequences of the Si be 
capable of transmission on the system; certain sequences only 
may be allowed. These will be possible signals for the channel. 
Thus in telegraphy suppose the symbols are: (1) A dot, consist­
ing of line closure for a unit of time and then line open for a unit 
of time; (2) A dash, consisting of three time units of closure 
and one unit open; (3) A letter space consisting of, say, three 
units of line open; (4) A word space of six units of line open. We 
might place the restriction on allowable sequences that no spaces 
follow each other (for if two letter spaces are adjacent, they are 
identical with a word space). The question we now consider is 
how one can measure the capacity of such a channel to transmit 
information.

In the teletype case where all symbols are of the same duration, 
and any sequence of the 32 symbols is allowed, the answer is easy. 
Each symbol represents five bits of information. If the system



transmits n symbols per second it is natural to say that the 
channel has a capacity of 5n bits per second. This does not mean 
that the teletype channel will always be transmitting information 
at this rate —  this is the maximum possible rate and whether or 
not the actual rate reaches this maximum depends on the source 
of information which feeds the channel, as will appear later.

In the more general case with different lengths of symbols and 
constraints on the allowed sequences, we make the following 
definition: The capacity C of a discrete channel is given by

C LimCO
log N(T)  

T
where N(T)  is the number of allowed signals of duration T.

It is easily seen that in the teletype case this reduces to the 
previous result. It can be shown that the limit in question will 
exist as a finite number in most cases of interest. Suppose all 
sequences of the symbols Si, • • • , Sw are allowed and these 
symbols have durations tly • • • , tn. What is the channel 
capacity? If N(t)  represents the number of sequences of duration 
t we have

N(t)  =  N(t  -  ¿0 +  N(t  -  t2) +  • • • +  N(t  -  tn).

The total number is equal to the sum of the numbers of sequences 
ending in Si, S2, • * * , Sn and these are N( t  — ¿1 ), N(t  — t2), 
• • • , N(t  — tn), respectively. According to a well-known result 
in finite differences, N(t)  is the asymptotic for large t to AXl  
where A is constant and X Q is the largest real solution of the 
characteristic equation:

X - h  +  X - t *  +  ■ • ■ +  X - t *  =  1
and therefore

C = Lim —log^ —  =  log X t.
T—»00 i

In case there are restrictions on allowed sequences we may still 
often obtain a difference equation of this type and find C from 
the characteristic equation. In the telegraphy case mentioned 
above

N(t)  =  N( t  -  2) +  N(t  -  4) +  N(t  -  5) +  N(t  -  7)
+  N ( t -  8) + N ( t -  10)



as we see by counting sequences of symbols according to the 
last or next to the last symbol occurring. Hence C is — log p0 
where /x0 is the positive root of 1 =  /a2 +  /a4 +  /a5 +  /a7 +  /a8 +  
/a10. Solving this we find C =  0.539.

A very general type of restriction which may be placed on 
allowed sequences is the following: We imagine a number of 
possible, states aly a2, • • • , a™. For each state only certain 
symbols from the set Si, • • • , S„ can be transmitted (different 
subsets for the different states). When one of these has been 
transmitted the state changes to a new state depending both on 
the old state and the particular symbol transmitted. The tele­
graph case is a simple example of this. There are two states 
depending on whether or not a space was the last symbol trans­
mitted. If so, then only a dot or a dash can be sent next and the 
state always changes. If not, any symbol can be transmitted and 
the state changes if a space is sent, otherwise it remains the same. 
The conditions can be indicated in a linear graph as shown in 
Fig. 2. The junction points correspond to the states and the lines 
indicate the symbols possible in a state and the resulting state. 
In Appendix 1 it is shown that if the conditions on allowed 
sequences can be described in this form C will exist and can be 
calculated in accordance with the following result:

Theorem 1: Let blf be the duration of the sth symbol which is 
allowable in state i and leads to stage j. Then the channel ca­
pacity C is equal to log W where W is the largest real root of the 
determinantal equation:

i E i f - 6.';’ -  8a | =  o «
where h%j — 1 if i =  ; and is zero otherwise.

DASH

Fig. 2. —  Graphical representation of the constraints on telegraph symbols.



For example, in the telegraph case (Fig. 2) the determinant is:

-  1 (W-2 + w-4)
=  0.

(W-3 + W-6) (W-2 + W-4 -  1)

On expansion this leads to the equation given above for this set 
of constraints.

2. The Discrete Source of Information

We have seen that under very general conditions the logarithm 
of the number of possible signals in a discrete channel increases 
linearly with time. The oapacity to transmit information can be 
specified by giving this rate of increase, the number of bits per 
second required to specify the particular signal used.

We now consider the information source. How is an information 
source to be described mathematically, and how much informa­
tion in bits per second is produced in a given source? The main 
point at issue is the effect of statistical knowledge about the 
source in reducing the required capacity of the channel, by the 
use of proper encoding of the information. In telegraphy, for 
example, the messages to be transmitted consist of sequences of 
letters. These sequences, however, are not completely random. 
In general, they form sentences and have the statistical structure 
of, say, English. The letter E occurs more frequently than Q, 
the sequence TH more frequently than XP, etc. The existence of 
this structure allows one to make a saving in time (or channel 
capacity) by properly encoding the message sequences into signal 
sequences. This is already done to a limited extent in telegraphy 
by using the shortest channel symbol, a dot, for the most common 
English letter E; while the infrequent letters, Q, X, Z are repre­
sented by longer sequences of dots and dashes. This idea is 
carried still further in certain commercial codes where common 
words and phrases are represented by four- or five-letter code 
groups with a considerable saving in average time. The stand­
ardized greeting and anniversary telegrams now in use extend 
this to the point of encoding a sentence or two into a relatively 
short sequence of numbers.

We can think of a discrete source as generating the message,



symbol by symbol. It will choose successive symbols according to 
certain probabilities depending, in general, on preceding choices 
as well as the particular symbols in question. A physical system, 
or a mathematical model of a system which produces such a 
sequence of symbols governed by a set of probabilities, is known 
as a stochastic process.3 We may consider a discrete source, there­
fore, to be represented by a stochastic process. Conversely, any 
stochastic process which produces a discrete sequence of symbols 
chosen from a finite set may be considered a discrete source. 
This will include such cases as:
1. Natural written languages such as English, German, Chinese.
2. Continuous information sources that have been rendered dis­

crete by some quantizing process. For example, the quantized 
speech from a PCM transmitter, or a quantized television 
signal.

3. Mathematical cases where we merely define abstractly a 
stochastic process which generates a sequence of symbols. The 
following are examples of this last type of source.

(A) Suppose we have five letters A, B, C, D, E which are chosen 
each with probability .2, successive choices being independ­
ent. This would lead to a sequence of which the following 
is a typical example.
B D C B C E C C C A D C B D D A A E C E E A A B B D
A E E C A C E E B A E E C B C E A D .
This was constructed with the use of a table of random 
numbers.4

(B) Using the same five letters let the probabilities be .4, .1, .2, 
.2, .1, respectively, with successive choices independent. A 
typical message from this source is then: 
A A A C D C B D C E A A D A D A C E D A E A D C A  
B E D A D D C E C A A A A A D .

(C) A more complicated structure is obtained if successive 
symbols are not chosen independently but their probabilities *

*See, for example, S. Chandrasekhar, “Stochastic Problems in Physics and 
Astronomy,” Reviews oj Modern Physics, v. 15, N o. 1, January 1943, p. 1. 
4 Kendall and Smith, Tables oj Random Sampling Numbers, Cambridge, 
1939.



depend on preceding letters. In the simplest case of this type 
a choice depends only on the preceding letter and not on 
ones before that. The statistical structure can then be de­
scribed by a set of transition probabilities P i ( j ) ,  the prob­
ability that letter i  is followed by letter ;. The indices i  and 
j  range over all the possible symbols. A second equivalent 
way of specifying the structure is to give the “ digram” 
probabilities p ( i , j ) ,  i.e., the relative frequency of the di­
gram i  j . The letter frequencies p ( i ) ,  (the probability of 
letter i), the transition probabilities P i ( j )  and the digram 
probabilities p ( i , j )  are related by the following formulas:

p(i) =  = Z p ( i , t )] ] 1
=  P(i)Pi(j)

Z ) p < 0 )  =  ^ p ( i )  = T f p ( i ,j )  =  l .
j * ». j

As a specific example suppose there are three letters A, B, 
C with the probability tables:

Viij) j i p(i) •p(i,j) 3
A B C A B C

A 0 4
5

1
5 A 9

27 A 0 4
15

1
15

i B 1
2

1
2 0 B 16

27 i  B 8
27

8
27 0

c 1 2 1 c 2 c 1 4 1
2 5 10 27 27 135 135

A typical message from this source is the following:
A B B A B A B A B A B A B A B B B A B B B B B A B A
B A B A B A B B B A C A C A B B A B B B B A B B A B
A C B B B A B A .
The next increase in complexity would involve trigram 
frequencies but no more. The choice of a letter would de­
pend on the preceding two letters but not on the message 
before that point. A set of trigram frequencies p(i, jy k) or 
equivalently a set of transition probabilities pij(k)  would 
be required. Continuing in this way one obtains successively 
more complicated stochastic processes. In the general n-gram



case a set of n-gram probabilities i2, • • • , in) or of 
transition probabilities pilf ¿2, * * * , ^ (¿n ) is required to 
specify the statistical structure.

(D) Stochastic processes can also be defined which produce a 
text consisting of a sequence of “ words.” Suppose there are 
five letters A, B, C, D, E and 16 “ words” in the language 
with associated probabilities:

Suppose successive “ words” are chosen independently and 
are separated by a space. A typical message might be:
DAB EE A BEBE DEED DEB ADEE ADEE EE DEB 
BEBE BEBE BEBE ADEE BED DEED DEED CEED 
ADEE A DEED DEED BEBE CABED BEBE BED DAB 
DEED ADEB.
If all the words are of finite length this process is equivalent 
to one of the preceding type, but the description may be 
simpler in terms of the word structure and probabilities. We 
may also generalize here and introduce transition probabil­
ities between words, etc.

These artificial languages are useful in constructing simple 
problems and examples to illustrate various possibilities. We can 
also approximate to a natural language by means of a series of 
simple artificial languages. The zero-order approximation is ob­
tained by choosing all letters with the same probability and in­
dependently. The first-order approximation is obtained by choos­
ing successive letters independently but each letter having the 
same probability that it has in the natural language.5 Thus, in 
the first-order approximation to English, E is chosen with prob­
ability .12 (its frequency in normal English) and W with proba­
bility .02, but there is no influence between adjacent letters and 
no tendency to form the preferred digrams such as TH, ED, etc.

s Letter, digram and trigram frequencies are given in Secret and Urgent by 
Fletcher Pratt, Blue Ribbon Books, 1939. Word frequencies are tabulated 
in Relative Frequency of English Speech Sounds, G. Dewey, Harvard Uni­
versity Press, 1923.

.04 ADEB 

.05 ADEE 

.01 BADD

.10 A .16 BEBE .11 CABED .04 DEB
.04 BED .05 CEED .15 DEED
.02 BEED .08 DAB .01 EAB
.05 CA .04 DAD .05 EE



In the second-order approximation, digram structure is intro­
duced. After a letter is chosen, the next one is chosen in accord­
ance with the frequencies with which the various letters follow 
the first one. This requires a table of digram frequencies p%(j). 
In the third-order approximation, trigram structure is introduced. 
Each letter is chosen with probabilities which depend on the pre­
ceding two letters.

3. The Series of Approximations to English

To give a visual idea of how this series of processes approaches a 
language, typical sequences in the approximations to English 
have been constructed and are given below. In all cases we have 
assumed a 27-symbol “ alphabet,” the 26 letters and a space.

1. Zero-order approximation (symbols independent and equi- 
probable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYV- 
KCQSGHYD QPAAMKBZAACIBZLHJQD.

2. First-order approximation (symbols independent but with 
frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA 
TH EEI ALHENHTTPA OOBTTVA NAH BRL.

3. Second-order approximation (digram structure as in Eng­
lish).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S 
DEAMY ACHIN D ILONASIVE TUCOOWE AT TEA- 
SONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).
IN NO 1ST LAT WHEY CRATICT FROURE BIRS 
GROCID PONDENOME OF DEMONSTURES OF 
THE REPTAGIN IS REGOACTIONA OF CRE.

5. First-order word approximation. Rather than continue with 
tetragram, • • • , n-gram structure it is easier and better to 
jump at this point to word units. Here words are chosen 
independently but with their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT 
OR COME CAN DIFFERENT NATURAL HERE HE



THE A IN CAME THE TO OF TO EXPERT GRAY 
COME TO FURNISHES THE LINE MESSAGE HAD 
BE THESE.

6. Second-order word approximation. The word transition prob­
abilities are correct but no further structure is included. 

THE HEAD AND IN FRONTAL ATTACK ON AN 
ENGLISH W RITER THAT THE CHARACTER OF 
THIS POINT IS THEREFORE ANOTHER METHOD 
FOR THE LETTERS THAT THE TIME OF WHO 
EVER TOLD' THE PROBLEM FOR AN UNEX­
PECTED.

The resemblance to ordinary English text increases quite no­
ticeably at each of the above steps. Note that these samples have 
reasonably good structure out to about twice the range that is 
taken into account in their construction. Thus in (3) the statis­
tical process insures reasonable text for two-letter sequences, but 
four-letter sequences from the sample can usually be fitted into 
good sentences. In (6) sequences of four or more words can easily 
be placed in sentences without unusual or strained constructions. 
The particular sequence of ten words “ attack on an English writer 
that the character of this” is not at all unreasonable. It appears 
then that a sufficiently complex stochastic process will give a 
satisfactory representation of a discrete source.

The first two samples were constructed by the use of a book of 
random numbers in conjunction with (for example 2) a table of 
letter frequencies. This method might have been continued for 
(3), (4) and (5), since digram, trigram and word frequency 
tables are available, but a simpler equivalent method was used. 
To construct (3) for example, one opens a book at random and 
selects a letter at random on the page. This letter is recorded. 
The book is then opened to another page and one reads until this 
letter is encountered. The succeeding letter is then recorded. 
Turning to another page this second letter is searched for and the 
succeeding letter recorded, etc. A similar process was use for (4), 
(5) and (6). It would be interesting if further approximations 
could be constructed, but the labor involved becomes enormous 
at the next stage.



4. Graphical Representation of a Markoff Process

Stochastic processes of the type described above are known math­
ematically as discrete Markoff processes and have been exten­
sively studied in the literature.6 The general case can be described 
as follows: There exist a finite number of possible “ states” of a 
system; Si, S2} * * • , Sn. In addition there is a set of transition 
probabilities, Pi(j),  the probability that if the system is in state 
Si it will next go to state Sj. To make this Markoff process into an 
information source we need only assume that a letter is produced 
for each transition from one state to another. The states will cor­
respond to the “ residue of influence” from preceding letters.

The situation can be represented graphically as shown in Figs. 
3, 4 and 5. The “ states” are the junction points in the graph and 
the probabilities and letters produced for a transition are given 
beside the corresponding line. Figure 3 is for the example B in 
Section 2, while Fig. 4 corresponds to the example C. In Fig. 3 
there is only one state since successive letters are independent. In 
Fig. 4 there are as many states as letters. If a trigram example 
were constructed there would be at most n2 states corresponding 
to the possible pairs of letters preceding the one being chosen. 
Figure 5 is a graph for the case of word structure in example D. 
Here S corresponds to the “ space” symbol.

5. Ergodic and Mixed Sources

As we have indicated above a discrete source for our purposes can 
be considered to be represented by a Markoff process. Among the 
possible discrete Markoff processes there is a group with special 
properties of significance in communication theory. This special 
class consists of the “ ergodic” processes and we shall call the 
corresponding sources ergodic sources. Although a rigorous defi­
nition of an ergodic process is somewhat involved, the general 
idea is simple. In an ergodic process every sequence produced by 
the process is the same in statistical properties. Thus the letter 
frequencies, digram frequencies, etc., obtained from particular 
sequences, will, as the lengths of the sequences increase, approach

6 For a detailed treatment see M . Frechet, M ethods des jonctions arbitraires. 
Théorie des énénements en chaîne dans le cas d'un nombre fini d'états pos­
sibles. Paris, Gauthier Villars, 1938.



definite limits independent of the particular sequence. Actually 
this is not true of every sequence but the set for which it is false 
has probability zero. Roughly the ergodic property means sta­
tistical homogeneity.

Fig. 5. —  A graph corresponding to the source in example D,



All the examples of artificial languages given above are ergodic. 
This property is related to the structure of the corresponding 
graph. If the graph has the following two properties7 the corre­
sponding process will be ergodic:

1. The graph does not consist of two isolated parts A and B 
such that it is impossible to go from junction points in part 
A to junction points in part B along lines of the graph in the 
direction of arrows and also impossible to go from junctions 
in part B to junctions in part A.

2. A closed series of lines in the graph with all arrows on the 
lines pointing in the same orientation will be called a “ cir­
cuit.” The “ length” of a circuit is the number of lines in it. 
Thus in Fig. 5 series BEBES is a circuit of length 5. The 
second property required is that the greatest common divisor 
of the lengths of all circuits in the graph be one.

If the first condition is satisfied but the second one violated by 
having the greatest common divisor equal to d >  1, the sequences 
have a certain type of periodic structure. The various sequences 
fall into d different classes which are statistically the same apart 
from a shift of the origin (i.e., which letter in the sequence is 
called letter 1). By a shift of from 0 up to d — 1 any sequence 
can be made statistically equivalent to any other. A simple ex­
ample with d =  2 is the following: There are three possible letters 
a, b, c. Letter a is followed with either b or c with probabilities 
l  and § respectively. Either b or c is always followed by letter a. 
Thus a typical sequence is

a b a c a c a c a b a c a b a b a c a c .

This type of situation is not of much importance for our work.
If the first condition is violated the graph may be separated 

into a set of subgraphs each of which satisfies the first condition. 
We will assume that the second condition is also satisfied for 
each subgraph. We have in this case what may be called a 
“ mixed” source made up of a number of pure components. The 
components correspond to the various subgraphs. If L u L2, L3, 
• • • are the component sources we may write

7 These are restatements in terms of the graph of conditions given in 
Frechet.



L — pxLx +  p2L2 +  PsL3 +  • • •

where pi is the probability of the component source L*.
Physically the situation represented is this: There are several 

different sources L 1} L2, L3, • • • which are each of homogeneous 
statistical structure (i.e., they are ergodic). We do not know 
a priori which is to be used, but once the sequence starts in a 
given pure component Li, it continues indefinitely according to 
the statistical structure of that component.

As an example one may take two of the processes defined above 
and assume px — .2 and p2 — .8. A sequence from the mixed 
source

L =  2 L 1 +  .8L2

would be obtained by choosing first or L2 with probabilities .2 
and .8 and after this choice generating a sequence from which­
ever was chosen.

Except when the contrary is stated we shall assume a source to 
be ergodic. This assumption enables one to identify averages 
along a sequence with averages over the ensemble of possible se­
quences (the probability of a discrepancy being zero). For ex­
ample the relative frequency of the letter A in a particular infi­
nite sequence will be, with probability one, equal to its relative 
frequency in the ensemble of sequences.

If Pi is the probability of state i and pi(j)  the transition prob­
ability to state j, then for the process to be stationary it is clear 
that the Pi must satisfy equilibrium conditions:

Pi =  X>p iPiU)-i
In the ergodic case it can be shown that with any starting condi­
tions the probabilities Pj (N) of being in state j after N symbols, 
approach the equilibrium values as N —> oo.

6. Choice, Uncertainty and Entropy

We have represented a discrete information source as a Markoff 
process. Can we define a quantity which will measure, in some 
sense, how much information is “ produced” by such a process, or 
better, at what rate information is produced?



Suppose we have a set of possible events whose probabilities of 
occurrence are ply p2, * * * , p*. These probabilities are known but 
that is all we know concerning which event will occur. Can we 
find a measure of how much “ choice” is involved in the selection 
of the event or of how uncertain we are of the outcome?

If there is such a measure, say H( p1} p2, * * * , pn) , it is reason­
able to require of it the following properties:

1. H should be continuous in the pi.

2. If all the pi are equal, pi =  f then H  should be a mono­
tonic increasing function of n. With equally likely events 
there is more choice, or uncertainty, when there are more 
possible events.

3. If a choice be broken down into two successive choices, the 
original H should be the weighted sum of the individual 
values of H. The meaning of this is illustrated in Fig. 6. At 
the left we have three possibilities pt =  p2 =  i ,  p3 — b  
On the right we first choose between two possibilities each 
with probability §, and if the second occurs make another 
choice with probabilities f, The final results have the 
same probabilities as before. We require, in this special case, 
that

The coefficient \ is the weighting factor introduced because this 
second choice only occurs half the time.

Fig. 6. —  Decomposition of a choice from three possibilities.

In Appendix 2, the following result is established:
Theorem 2: The only H satisfying the three above assumptions 

is of the form:



H -  — log pi¿=1
where K  is a positive constant.

This theorem, and the assumptions required for its proof, are in 
no way necessary for the present theory. It is given chiefly to 
lend a certain plausibility to some of our later definitions. The 
real justification of these definitions, however, will reside in their 
implications.

Quantities ..of the form H =  — X pi log Pi (the constant K  
merely amounts to a choice of a unit of measure) play a central 
role in information theory as measures of information, choice and 
uncertainty. The form of H will be recognized as that of entropy

Fig. 7. —  Entropy in the case of two possibilities with probabilities p and (1— p).

as defined in certain formulations of statistical mechanics8 where 
Pi is the probability of a system being in cell i of its phase space.

8 See, for example, R . C. Tolman, Principles oj Statistical Mechanics, Ox­
ford, Clarendon, 1938.



H is then, for example, the H in Boltzmann’s famous H  theorem. 
We shall call H — — X Pi log Pi the entropy of the set of proba­
bilities pi, • • • , pn. If x is a chance variable we will write H(x)  
for its entropy; thus x is not an argument of a function but a 
label for a number, to differentiate it from H(y)  say, the entropy 
of the chance variable y.

The entropy in the case of two possibilities with probabilities p 
and q =  1 — p, namely

H =  — (p log p +  q log q)

is plotted in Fig. 7 as a function of p.
The quantity H has a number of interesting properties which 

further substantiate it as a reasonable measure of choice or 
information.

1. H =  0 if and only if all the pi but one are zero, this one 
having the value unity. Thus only when we are certain of the out­
come does H vanish. Otherwise H is positive.

2. For a given n, H is a maximum and equal to log n when all
the pi are equal, i.e., This is also intuitively the most uncertain 
situation.

3. Suppose there are two events, x and y, in question, with m 
possibilities for the first and n for the second. Let p (i , j) be the 
probability of the joint occurrence of i for the first and j for the 
second. The entropy of the joint event is

H{x, y) = -  l l p i h j )  log Pd, j )1,3while

H(x)  =  - X p ( i , j )  log 1 2 p (i,j)1.3 3

H(y)  =  -  l l p i h j )  l o g E p ( i j ') .1.3 I
It is easily shown that

H (x , y) < H ( x )  +  H(y)

with equality only if the events are independent (i.e., p(i , j )  =  
p{i) p( j ) ) .  The uncertainty of a joint event is less than or equal 
to the sum of the individual uncertainties.

4. Any change toward equalization of the probabilities p1} p2)



• • • , pn increases H. Thus if pi <  p2 and we increase pu decreas­
ing p2 an equal amount so that px and p2 are more nearly equal, 
then H increases. More generally, if we perform any “ averaging” 
operation on the p\ of the form

Pi ~  53 an Pii
where 53 an =  53 a»,* =  1, and all ai? >  0, then H  increases (except

i i
in the special case where this transformation amounts to no 
more than a permutation of the with H  of course remaining 
the same).

5. Suppose there are two chance events x and y  as in 3, not 
necessarily independent. For any particular value i that x can 
assume there is a conditional probability Pi(j) that y has the 
value j. This is given by

ViU) = V(hj)

5 3 p (i,i)

We define the conditional entropy of y , Hx(y) as the average of 
the entropy of y for each value of x , weighted according to the 
probability of getting that particular x. That is

Hx(y) = -  log pi(j).
1,3

This quantity measures how uncertain we are of y on the average 
when we know x. Substituting the value of p%{j) we obtain

H M  =  log p (i,j)  + J l p ( i , j )  log J lp (i ,j )

= H{x, y )  -  H(x)  
or

H( x , y )  = H ( x )  + H . ( y ) .

The uncertainty (or entropy) of the joint event x, y is the uncer­
tainty of x plus the uncertainty of y when x is known.

6. From 3 and 5 we have
H(x)  + H ( y )  >  H(x,  y) = H ( x )  + H x(y).

H ( y ) >  Hx(y ) .
Hence



The uncertainty of y is never increased by knowledge of x. It will 
be decreased unless x and y are independent events, in which case 
it is not changed.

7. The Entropy of an Information Source

Consider a discrete source of the finite state type considered 
above. For each possible state i there will be a set of probabilities 
Vi(j) of producing the various possible symbols j. Thus there is 
an entropy Hi for each state. The entropy of the source will be 
defined as the average of these Hi weighted in accordance with 
the probability of occurrence of the states in question:

H  = E №i
=  -  lLPiPi(j) log pi(J).

This is the entropy of the source per symbol of text. If the 
Markoff process is proceeding at a definite time rate there is also 
an entropy per second.

h ' =  T,fiHii
were /i is the average frequency (occurrences per second) of 
state i. Clearly

H' =  mH

where m is the average number of symbols produced per second. 
H or i / '  measures the amount of information generated by the 
source per symbol or per second. If the logarithmic base is 2, 
they will represent bits per symbol or per second.

If successive symbols are independent then H  is simply 
— X Vi log Pi where Pi is the probability of symbol i. Suppose in 
this case we consider a long message of N  symbols. It will contain 
with high probability about pXN  occurrences of the first symbol, 
p2N  occurrences of the second, etc. Hence the probability of this 
particular message will be roughly

p  =  p P iN  p P tN . . . p P nN

or

log p =  N^Lpi log pii



log p =  — NH

^  log 1/p 
H N  •

H is thus approximately the logarithm of the reciprocal prob­
ability of a typical long sequence divided by the number of 
symbols in the sequence. The same result holds for any source. 
Stated more precisely we have (see Appendix 3):

Theorem 3: Given any c >  0 and 8 >  0, we can find an N0 
such that the sequences of any length N  >  N0 fall into two 
classes:
1. A set whose total probability is less than c.
2. The remainder, all of whose members have probabilities satis­
fying the inequality

log P-1
N

-  H < ô .

log; x)“1
In other words we are almost certain to have — very close to 
H  when N  is large.

A closely related result deals with the number of sequences of 
various probabilities. Consider again the sequences of length N 
and let them be arranged in order of decreasing probability. We 
define n(q)  to be the number we must take from this set starting 
with the most probable one in order to accumulate a total prob­
ability q for those taken.

Theorem 4'

LimAT-co
log n(q) 

N
= H

when q does not equal 0 or 1.
We may interpret log n(q)  as the number of bits required to 

specify the sequence when we consider only the most probable

sequences with a total probability q. Then is the number

of bits per symbol for the specification. The theorem says that for 
large N  this will be independent of q and equal to H. The rate of 
growth of the logarithm of the number of reasonably probable 
sequences is given by H, regardless of our interpretation of



“ reasonably probable/' Due to these results, which are proved in 
Appendix 3, it is possible for most purposes to treat the long 
sequences as though there were just 2HN of them, each with a 
probability 2~HN.

The next two theorems show that H and H' can be determined 
by limiting operations directly from the statistics of the message 
sequences, without reference to the states and transition prob­
abilities between states.

Theorem 5: Let p(Bi) be the probability of a sequence Bi 
symbols from the source. Let

of

Gn = -----log p{Bi)N

where the sum is over all sequences Bi containing N symbols. 
Then Gn is a monotonic decreasing function of N and

Lim Gn =  H.
N —»00

Theorem 6: Let p ( Biy Sj) be the probability of sequence Bi 
followed by symbol Sj and pBi(Sj) =  p(Bif Sj)/p(Bi) be the 
conditional probability of Sj after Bi. L et•

F n =  -  Ep(ßi, Si) log pBi (Si)

where the sum is over all blocks Bi of N — 1 symbols and over all 
symbols Sj. Then FN is a monotonic decreasing function of N,

Fn = NGn — (N — 1) GN- h
N

Gn = ~ W ^ Fn’

F n < Gn , 
and Lim FN = H.N—*03

These results are derived in Appendix 3. They show that a 
series of approximations to H can be obtained by considering 
only the statistical structure of the sequences extending over 1, 2, 
• * * , N symbols. Fn is the better approximation. In fact FN is 
the entropy of the N th order approximation to the source of the 
type discussed above. If there are no statistical influences extend­
ing over more than N  symbols, that is if the conditional prob­



ability of the next symbol knowing the preceding (N — 1) is 
not changed by a knowledge of any before that, then FN =  H. 
Fn of course is the conditional entropy of the next symbol when 
the (N — 1) preceding ones are known, while GN is the entropy 
per symbol of blocks of N symbols.

The ratio of the entropy of a source to the maximum value it 
could have while still restricted to the same symbols will be 
called its relative entropy. This, as will appear later, is the maxi­
mum compression possible when we encode into the same alpha­
bet. One minus the relative entropy is the redundancy. The 
redundancy of ordinary English, not considering statistical struc­
ture over greater distances than about eight letters, is roughly 
50%. This means that when we write English half of what we 
write is determined by the structure of the language and half is 
chosen freely. The figure 50% was found by several independent 
methods which all gave results in this neighborhood. One is by 
calculation of the entropy of the approximations to English. A 
second method is to delete a certain fraction of the letters from a 
sample of English text and then let someone attempt to restore 
them. If they can be restored when 50% are deleted the redun­
dancy must be greater than 50%. A third method depends on 
certain known results in cryptography.

Two extremes of redundancy in English prose are represented 
by Basic English and by James Joyce’s book Finnegans Wake. 
The Basic English vocabulary is limited to 850 words and the 
redundancy is very high. This is reflected in the expansion that 
occurs when a passage is translated into Basic English. Joyce 
on the other hand enlarges the vocabulary and is alleged to 
achieve a compression of semantic content.

The redundancy of a language is related to the existence of 
crossword puzzles. If the redundancy is zero any sequence of 
letters is a reasonable text in the language and any two-dimen­
sional array of letters forms a crossword puzzle. If the redun­
dancy is too high the language imposes too many constraints for 
large crossword puzzles to be possible. A more detailed analysis 
shows that if we assume the constraints imposed by the language 
are of a rather chaotic and random nature, large crossword puzzles 
are just possible when the redundancy is 50%. If the redundancy



is 33%, three-dimensional crossword puzzles should be possible, 
etc.

8. Representation of the Encoding and Decoding Operations

We have yet to represent mathematically the operations per­
formed by the transmitter and receiver in encoding and decoding 
the information. Either of these will be called a discrete trans­
ducer. The input to the transducer is a sequence of input sym­
bols and its output a sequence of output symbols. The transducer 
may have an internal memory so that its output depends not 
only on the present input symbol but also on the past history. 
We assume that the internal memory is finite, i.e., there exist a 
finite number m of possible states of the transducer and that its 
output is a function of the present state and the present input 
symbol. The next state will be a second function of these two 
quantities. Thus a transducer can be described by two functions:

V n  /  (#TI f  <*n)

Ofn+1 9 (•£*»> **n)

where:
xn is the nth input symbol.
an is the state of the transducer when the nth input symbol is 

introduced,
yn is the output symbol (or sequence of output symbols) pro­

duced when xn is introduced if the state is an.
If the output symbols of one transducer can be identified with 

the input symbols of a second, they can be connected in tandem 
and the result is also a transducer. If there exists a second 
transducer which operates on the output of the first and recovers 
the original input, the first transducer will be called non-singular 
and the second will be called its inverse.

Theorem 7: The output of a finite state transducer driven by a 
finite state statistical source is a finite state statistical source, 
with entropy (per unit time) less than or equal to that of the 
input. If the transducer is non-singular they are equal.

Let a represent the state of the source, which produces a se-



quence of symbols Xi; and let /3 be the state of the transducer, 
which produces, in its output, blocks of symbols yj. The combined 
system can be represented by the “ product state space” of pairs 
(a, /3). Two points in the space (ax, fix) and (a2, /32), are con­
nected by a line if ax can produce an x which changes ¡3X to /32, 
and this line is given the probability of that x in this case. The 
line is labeled with the block of y x symbols produced by the 
transducer. The entropy of the output can be calculated as the 
weighted sum over the states. If we sum first on (3 each resulting 
term is less than or equal to the corresponding term for <*, hence 
the entropy is not increased. If the transducer is non-singular 
let its output be connected to the inverse transducer. If H'x, H2 
and H 3 are the output entropies of the source, the first and 
second transducers respectively, then H'x >  H'2 >  Hf3 =  H'x and 
therefore H[ =  H2.

Suppose we have a system of constraints on possible sequences 
of the type which can be represented by a linear graph as in 
Fig. 2 . If probabilities p(i)  were assigned to the various lines 
connecting state i to state j this would become a source. There is 
one particular assignment which maximizes the resulting entropy 
(see Appendix 4).

Theorem 8: Let the system of constraints considered as a chan­
nel have a capacity C =  log W. If we assign

_(«) Bi TIT—/(*>Vij =  - g — W  •*

where 1$ is the duration of the sth symbol leading from state i to 
state j and the Bi satisfy

Bi =  T ,B jW -ws,]
then H is maximized and equal to C.

By proper assignment of the transition probabilities the 
entropy of symbols on a channel can be maximized at the 
channel capacity.

9. The Fundamental Theorem for a Noiseless Channel

We will now justify our interpretation of H as the rate of gen­



erating information by proving that H determines the channel 
capacity required with most efficient coding.

Theorem 9: Let a source have entropy H (bits per symbol) 
and a channel have a capacity C (bits per second). Then it is 
possible to encode the output of the source in such a way as to

C
transmit at the average rate —  — c symbols per second over thehi
channel where e is arbitrarily small. It is not possible to transmit

Cat an average rate greater than — .
CThe converse part of the theorem, that -rj cannot be exceeded,H

may be proved by noting that the entropy of the channel input 
per second is equal to that of the source, since the transmitter 
must be non-singular, and also this entropy cannot exceed the 
channel capacity. Hence IT <  C and the number of symbols per 
second -  H'/H <  C/H.

The first part of the theorem will be proved in two different 
ways. The first method is to consider the set of all sequences of 
N symbols produced by the source. For N large we can divide 
these into two groups, one containing less than 2(H+V)N members 
and the second containing less than 2RN members (where R is the 
logarithm of the number of different symbols) and having a total 
probability less than p. As N increases rj and p approach zero. 
The number of signals of duration T in the channel is greater 
than 2{C~d)T with 9 small when T is large. If we choose

then there will be a sufficient number of sequences of channel 
symbols for the high probability group when N  and T are suffi­
ciently large (however small A) and also some additional ones. 
The high probability group is coded in an arbitrary one-to-one 
way into this set. The remaining sequences are represented by 
larger sequences, starting and ending with one of the sequences 
not used for the high probability group. This special sequence 
acts as a start and stop signal for a different code. In between a 
sufficient time is allowed to give enough different sequences for 
all the low probability messages. This will require



where <p is small. The mean rate of transmission in message sym­
bols per second will then be greater than

As N  inlcreases 5, X and <p approach zero and the rate approaches 
C
H *

Another method of performing this coding and thereby prov­
ing the theorem can be described as follows: Arrange the mes­
sages of length N  in order of decreasing probability and suppose

s —1
their probabilities are pi >  P2 >  pz * • • >  pn- Let P 8 = ^2pi’}

that is P s is the cumulative probability up to, but not including, 
p8. We first encode into a binary system. The binary code for 
message s is obtained by expanding P s as a binary number. The 
expansion is carried out to m8 places, where m8 is the integer 
satisfying:

log2 —  <  ms <  1  +  log2 — .
Pa Ps

Thus the messages of high probability are represented by short 
codes and those of low probability by long codes. From these 
inequalities we have

_j _ < „  < _ l _2m. 2m.-i *

The code for P 8 will differ from all succeeding ones in one or

more of its m8 places, since all the remaining Pi are at least -

larger and their binary expansions therefore differ in the first 
m8 places. Consequently all the codes are different and it is 
possible to recover the message from its code. If the channel 
sequences are not already sequences of binary digits, they can 
be ascribed binary numbers in an arbitrary fashion and the 
binary code thus translated into signals suitable for the channel.

The average number Hi of binary digits used per symbol of 
original message is easily estimated. We have



Hi = - j f
But,

W  2 ( log2 Pa -  ~ ir  2m‘Ps <  I T  2  0  +  log2 p>
and therefore,

Gn < H1 < (?w + Я  ‘
As AT increases GW approaches H y the entropy of the source and 
Hi approaches H.

We see from this that the inefficiency in coding, when only 
a finite delay of N  symbols is used, need not be greater than

- j j -  plus the difference between the true entropy H  and the

entropy Gn calculated for sequences of length N. The per cent 
excess time needed over the ideal is therefore less than

Gn , 1
Я HN -  1 .

This method of encoding is substantially the same as one 
found independently by R. M. Fano . 9 His method is to arrange 
the messages of length N  in order of decreasing probability. 
Divide this series into two groups of as nearly equal probability 
as possible. If the message is in the first group its first binary 
digit will be 0, otherwise 1. The groups are similarly divided 
into subsets of nearly equal probability and the particular sub­
set determines the second binary digit. This process is continued 
until each subset contains only one message. It is easily seen 
that apart from minor differences (generally in the last digit) 
this amounts to the same thing as the arithmetic process described 
above.

10. Discussion and Examples

In order to obtain the maximum power transfer from a generator 
to a load, a transformer must in general be introduced so that

9 Technical Report No. 65, The Research Laboratory of Electronics, M .I.T ., 
March 17, 1949.



the generator as seen from the load has the load resistance. The 
situation here is roughly analogous. The transducer which does 
the encoding should match the source to the channel in a statis­
tical sense. The source as seen from the channel through the 
transducer should have the same statistical structure as the 
source which maximizes the entropy in the channel. The content 
of Theorem 9 is that, although an exact match is not in general 
possible, we can approximate it as closely as desired. The ratio 
of the actual rate of transmission to the capacity C may be called 
the efficiency of the coding system. This is of course equal to the 
ratio of the actual entropy of the channel symbols to the maxi­
mum possible entropy.

In general, ideal or nearly ideal encoding requires a long delay 
in the transmitter and receiver. In the noiseless case which we 
have been considering, the main function of this delay is to allow 
reasonably good matching of probabilities to corresponding 
lengths of sequences. With a good code the logarithm of the 
reciprocal probability of a long message must be proportional to 
the duration of the corresponding signal, in fact

log _  r
T °

must be small for all but a small fraction of the long messages.
If a source can produce only one particular message its entropy 

is zero, and no channel is required. For example, a computing 
machine set up to calculate the successive digits of 7r produces 
a definite sequence with no chance element. No channel is required 
to “ transmit” this to another point. One could construct a second 
machine to compute the same sequence at the point. However, 
this may be impractical. In such a case we can choose to ignore 
some or all of the statistical knowledge we have of the source. 
We might consider the digits of 7r to be a random sequence in 
that we construct a system capable of sending any sequence of 
digits. In a similar way we may choose to use some of our 
statistical knowledge of English in constructing a code, but not 
all of it. In such a case we consider the source with the maximum 
entropy subject to the statistical conditions we wish to retain. 
The entropy of this source determines the channel capacity 
which is necessary and sufficient. In the tt example the only infor­



mation retained is that all the digits are chosen from the set 
0, 1, • • • , 9. In the case of English one might wish to use the 
statistical saving possible due to letter frequencies, but nothing 
else. The maximum entropy source is then the first approximation 
to English and its entropy determines the required channel 
capacity.

As a simple example of some of these results consider a source 
which produces a sequence of letters chosen from among A, B, C, 
D with probabilities |, successive symbols being chosen
independently. We have

H = -  a  log i  +  i log i +  f  log i)
= \ bits per symbol.

Thus we can approximate a coding system to encode messages 
from this source into binary digits with an average of \ binary 
digit per symbol. In this case we can actually achieve the limiting 
value by the following code (obtained by the method of the 
second proof of Theorem 9):

A 0

B 1 0

C 1 1 0

D 1 1 1

The average number of binary digits used in encoding a sequence 
of N symbols will be

N (* X 1 +  ï  X 2 +  | X 3) = l  N.

It is easily seen that the binary digits 0, 1 have probabilities 
J, J so the H for the coded sequences is one bit per symbol. 
Since, on the average, we have \ binary symbols per original 
letter, the entropies on a time basis are the same. The maxi­
mum possible entropy for the original set is log 4 =  2, occurring 
when A, B, C, D have probabilities Hence the relative
entropy is J. We can translate the binary sequences into the 
original set of symbols on a two-to-one basis by the following 
table :

0 0 A'
0 1 B'
1 0 C'
1 1 D'



This double process then encodes the original message into the 
same symbols but with an average compression ratio £.

As a second example consider a source which produces a se­
quence of A 1 s and B ’s with probability p for A and q for B. 
If p <  <  q we have

H =  — logpp(l — p )1_p 
— — p log p{ 1  — p )(1_p)/p 

=  V log

In such a case one can construct a fairly good coding of the 
message on a 0 , 1  channel by sending a special sequence, say 
0000, for the infrequent symbol A and then a sequence indicating 
the number of B ’s following it. This could be indicated by the 
binary representation with all numbers containing the special 
sequence deleted. All numbers up to 16 are represented as usual; 
16 is represented by the next binary number after 16 which does 
not contain four zeros, namely 17 =  10001, etc.

It can be shown that as p —> 0  the coding approaches ideal 
provided the length of the special sequence is properly adjusted.



The Discrete Channel with Noise

11. Representation of a Noisy Discrete Channel

We now consider the case where the signal is perturbed by noise 
during transmission or at one or the other of the terminals. This 
means that the received signal is not necessarily the same as that 
sent out by the transmitter. Two cases may be distinguished. If 
a particular transmitted signal always produces the same re­
ceived signal, i.e., the received signal is a definite function of 
the transmitted signal, then the effect may be called distortion. 
If this function has an inverse —  no two transmitted signals 
producing the same received signal — distortion may be cor­
rected, at least in principle, by merely performing the inverse 
functional operation on the received signal.

The case of interest here is that in which the signal does not 
always undergo the same change in transmission. In this case we 
may assume the received signal E to be a function of the trans­
mitted signal S and a second variable, the noise N.

E =  f (S,N)

The noise is considered to be a chance variable just as the mes­
sage was above. In general it may be represented by a suitable 
stochastic process. The most general type of noisy discrete chan­
nel we shall consider is a generalization of the finite state noise- 
free channel described previously. We assume a finite number of 
states and a set of probabilities



This is the probability, if the channel is in state a and symbol i 
is transmitted, that symbol j  will be received and the channel 
left in state ft. Thus a and /3 range over the possible states, i over 
the possible transmitted signals and j over the possible received 
signals. In the case where successive symbols are independently 
perturbed by the noise there is only one state, and the channel is 
described by the set of transition probabilities P i(j), the prob­
ability of transmitted symbol i being received as j.

If a noisy channel is fed by a source there are two statistical 
processes at work: the source and the noise. Thus there are a 
number of entropies that can be calculated. First there is the 
entropy H(x)  of the source or of the input to the channel (these 
will be equal if the transmitter is non-singular). The entropy of 
the output of the channel, i.e., the received signal, will be denoted 
by H(y) .  In the noiseless case H(y)  =  H{x) .  The joint entropy 
of input and output will be H(x,y) .  Finally there are two condi­
tional entropies Hx(y) and Hy(x),  the entropy of the output 
when the input is known and conversely. Among these quantities 
we have the relations

H(x,y) =  H(x)  +  Hx(y) =  H(y)  +  Hy(x).

All of these entropies can be measured on a per-second or a per- 
symbol basis.

12. Equivocation and Channel Capacity

If the channel is noisy it is not in general possible to reconstruct 
the original message or the transmitted signal with certainty by 
any operation on the received signal E. There are, however, ways 
of transmitting the information which are optimal in combating 
noise. This is the problem which we now consider.

Suppose there are two possible symbols 0  and 1 , and we are 
transmitting at a rate of 1 0 0 0  symbols per second with probabili­
ties po =  pi =  Thus our source is producing information at the 
rate of 1000 bits per second. Puring transmission the noise intro­
duces errors so that, on the average, 1  in 1 0 0  is received incor­
rectly (a 0  as 1, or 1 as 0 ). What is the rate of transmission of



information? Certainly less than 1000 bits per second since about 
1 % of the received symbols are incorrect. Our first impulse might 
be to say the rate is 990 bits per second, merely subtracting the 
expected number of errors. This is not satisfactory since it fails 
to take into account the recipient’s lack of knowledge of where 
the errors occur. We may carry it to an extreme case and suppose 
the noise so great that the received symbols are entirely inde­
pendent of the transmitted symbols. The probability of receiving 
1 is J whatever was transmitted and similarly for 0. Then about 
half of the received symbols are correct due to chance alone, and 
we would be giving the system credit for transmitting 500 bits 
per second while actually no information is being transmitted at 
all. Equally “ good” transmission would be obtained by dispensing 
with the channel entirely and flipping a coin at the receiving 
point.

Evidently the proper correction to apply to the amount of in­
formation transmitted is the amount of this information which is 
missing in the received signal, or alternatively the uncertainty 
when we have received a signal of w'hat was actually sent. From 
our previous discussion of entropy as a measure of uncertainty it 
seems reasonable to use the conditional entropy of the message, 
knowing the received signal, as a measure of this missing infor­
mation. This is indeed the proper definition, as we shall see later. 
Following this idea the rate of actual transmission, R , would be 
obtained by subtracting from the rate of production (i.e., the 
entropy of the source) the average rate of conditional entropy.

R =  H{x)  -  Hy(x)

The conditional entropy Hy{x) will, for convenience, be called 
the equivocation. It measures the average ambiguity of the re­
ceived signal.

In the example considered above, if a 0 is received the a 'poste­
riori probability that a 0 was transmitted is .99, and that a 1 was 
transmitted is .0 1 . These figures are reversed if a 1 is received. 
Hence

Hy(x) =  -  [.99 log .99 +  0 . 0 1  log 0 .0 1 ]
=  .081 bits/symbol

or 81 bits per second. We may say that the system is transmitting



ai a rate 1000 — 81 =  919 bits per second. In the extreme case 
where a 0  is equally likely to be received as a 0  or 1  and similarly 
for 1 , the a 'posteriori probabilities are \ and

H„(x)  =  -  [J log J +  i  log i]
= 1  bit per symbol

or 1000 bits per second. The rate of transmission is then 0 as it 
should be.

The following theorem gives a direct intuitive interpretation of 
the equivocation and also serves to justify it as the unique appro­
priate measure. We consider a communication system and an 
observer (or auxiliary device) who can see both what is sent and 
what is recovered (with errors due to noise). This observer notes 
the errors in the recovered message and transmits data to the 
receiving point over a “ correction channel” to enable the receiver 
to correct the errors. The situation is indicated schematically in 
Fig. 8 .

CORRECTION DATA

SOURCE TRANSMITTER RECEIVER CORRECTING
DEVICE

Fig. 8. —  Schematic diagram of a correction system.

Theorem 10: If the correction channel has a capacity equal to 
Hv(x) it is possible to so encode the correction data as to send it 
over this channel and correct all but an arbitrarily small fraction 
c of the errors. This is not possible if the channel capacity is less 
than Hy{x).

Roughly then, Hv(x) is the amount of additional information



that must be supplied per second at the receiving point to correct 
the received message.

To prove the first part, consider long sequences of received 
message M '  and corresponding original message M,  There will be 
logarithmically THy (z) of the ATs which could reasonably have 
produced each Af'. Thus we have THy(x) binary digits to send 
each T seconds. This can be done with c frequency of errors on a 
channel of capacity Hy{x).

The second part can be proved by noting, first, that for any 
discrete chance variables x , y y z

Hy(x} z) >  Hy(x).

The left-hand side can be expanded to give
Hy(z) +  Hyz(x) >  Hy(x)

Hyz(x) > H y(x) -  Hy(z) > H y(x) - H ( z ) .

If we identify x as the output of the source, y  as the received 
signal and z as the signal sent over the correction channel, then 
the right-hand side is the equivocation less the rate of transmis­
sion over the correction channel. If the capacity of this channel 
is less than the equivocation the right-hand side will be greater 
than zero and Hyz{x) >  0. But this is the uncertainty of what 
was sent, knowing both the received signal and the correction 
signal. If this is greater than zero the frequency of errors cannot 
be arbitrarily small.

Example:

Suppose the errors occur at random in a sequence of binary digits: 
probability p that a digit is wrong and q =  1 — p that it is right. 
These errors can be corrected if their position is known. Thus the 
correction channel need only send information as to these positions. 
This amounts to transmitting from a source which produces binary 
digits with probability p for 1 (incorrect) and q for 0 (correct). This 
requires a channel of capacity

— [p log p +  q log q]
which is the equivocation of the original system.
The rate of transmission R can be written in two other forms 

due to the identities noted above. We have



R =  H(x)  -  Hy(x)

— H(y)  -  Hx(y)
=  H(x)  + H ( y )  ~ H ( x , y ) .

The first defining expression has already been interpreted as the 
amount of information sent less the uncertainty of what was sent. 
The second measures the amount received less the part of this 
which is due to noise. The third is the sum of the two amounts 
less the joint entropy and therefore in a sense is the number of 
bits per second common to the two. Thus all three expressions 
have a certain intuitive significance.

The capacity C of a noisy channel should be the maximum pos­
sible rate of transmission, i.e., the rate when the source is properly 
matched to the channel. We therefore define the channel ca­
pacity by

C =  Max (H(x) -  Hy(x))

where the maximum is with respect to all possible information 
sources used as input to the channel. If the channel is noiseless, 
Hy(x) =  0 . The definition is then equivalent to that already 
given for a noiseless channel since the maximum entropy for the 
channel is its capacity by Theorem 8 .

13. The Fundamental Theorem for a Discrete Channel 
with Noise

It may seem surprising that we should define a definite ca­
pacity C for a noisy channel since we can never send certain 
information in such a case. It is clear, however, that by sending 
the information in a redundant form the probability of errors can 
be reduced. For example, by repeating the message many times 
and by a statistical study of the different received versions of the 
message the probability of errors could be made very small. One 
would expect, however, that to make this probability of errors 
approach zero, the redundancy of the encoding must increase 
indefinitely, and the rate of transmission therefore approach zero. 
This is by no means true. If it were, there would not be a very 
well defined capacity, but only a capacity for a given frequency 
of errors, or a given equivocation; the capacity going down as the



error requirements are made more stringent. Actually the ca­
pacity C defined above has a very definite significance. It is pos­
sible to send information at the rate C through the channel with 
as small a frequency of errors or equivocation as desired by 
proper encoding. This statement is not true for any rate greater 
than C. If an attempt is made to transmit at a higher rate than C, 
say C +  R ly then there will necessarily be an equivocation equal 
to or greater than the excess R lt Nature takes payment by re­
quiring just that much uncertainty, so that we are not actually 
getting any more than C through correctly.

The situation is indicated in Fig. 9. The rate of information into 
the channel is plotted horizontally and the equivocation verti­
cally. Any point above the heavy line in the shaded region can 
be attained and those below cannot. The points on the line cannot 
in general be attained, but there will usually be two points on the 
line that can.

These results are the main justification for the definition of C 
and will now be proved.

Theorem 11: Let a discrete channel have the capacity C and 
a discrete source the entropy per second H. If H <  C there exists 
a coding system such that the output of the source can be trans­
mitted over the channel with an arbitrarily small frequency of 
errors (or an arbitrarily small equivocation) . If H >  C it is pos­
sible to encode the source so that the equivocation is less than 
H — C +  c where e is arbitrarily small. There is no method of 
encoding which gives an equivocation less than H — C.

The method of proving the first part of this theorem is not by 
exhibiting a coding method having the desired properties, but by 
showing that such a code must exist in a certain group of codes.

Fig. 9. —  The equivocation possible for a given input entropy to a channel.



In fact we will average the frequency of errors over this group 
and show that this average can be made less than c. If the average 
of a set of numbers is less than e there must exist at least one in 
the set which is less than c. This will establish the desired result.

The capacity C of a noisy channel has been defined as
C =  Max (H(x)  — Hy(x))

where x is the input and y the output. The maximization is over 
all sources which might be used as input to the channel.

Let S0 be a source which achieves the maximum capacity C. 
If this maximum is not actually achieved by any source (but 
only approached as a limit) let S0 be a source which approximates 
to giving the maximum rate. Suppose S0 is used as input to the 
channel. We consider the possible transmitted and received se­
quences of a long duration T. The following will be true:

1 . The transmitted sequences fall into two classes, a high prob­
ability group with about 2th (x) members and the remaining se­
quences of small total probability.

2 . Similarly the received sequences have a high probability set 
of about 2TH (v) members and a low probability set of remaining 
sequences.

3. Each high probability output could be produced by about 
2 thv(x) inpUts. The total probability of all other cases is small.

4. Each high probability input could result in about 2TH*(X) 
outputs. The total probability of all other results is small.

All the e’s and 8 ’s implied by the words “ small” and “ about” in 
these statements approach zero as we allow T to increase and S0  

to approach the maximizing source.
The situation is summarized in Fig. 1 0  where the input se­

quences are points on the left and output sequences points on the 
right. The upper fan of cross lines represents the range of possible 
causes for a typical output. The lower fan represents the range of 
possible results from a typical input. In both cases the “ small 
probability” sets are ignored.

Now suppose we have another source S, producing information 
at rate R with R <  C. In the period T this source will have 2TR 
high probability messages. We wish to associate these with a
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Fig. 10. —  Schematic representation of the relations between inputs and outputs 
in a channel.

selection of the possible channel inputs in such a way as to get a 
small frequency of errors. We will set up this association in all 
possible ways (using, however, only the high probability group of 
inputs as determined by the source S0) and average the frequency 
of errors for this large class of possible coding systems. This is the 
same as calculating the frequency of errors for a random associa­
tion of the messages and channel inputs of duration T . Suppose a 
particular output i/i is observed. What is the probability of more 
than one message from S, in the set of possible causes of y x? 
There are 2TR messages distributed at random in 2th (a?) points. 
The probability of a particular point being a message is thus

2  T(R-H(X))'

The probability that none of the points in the fan is a message 
(apart from the actual originating message) is

P  =  [l — 2 T(/2_H(x))]2riri'(‘>.



Now R <  H(x)  — Hy(x) so R — H(x)  =  — Hy(x) — y with y 
positive. Consequently

P =  [l — 2 - T H y( x ) - T v ] 2 THy (x)

approaches (as T oo)
1 -  2 - T \

Hence the probability of an error approaches zero and the first 
part of the theorem is proved.

The second part of the theorem is easily shown by noting that 
we could merely send C bits per second from the source, com­
pletely neglecting the remainder of the information generated. At 
the receiver the neglected part gives an equivocation H(x)  — C 
and the part transmitted need only add c. This limit can also be 
attained in many other ways, as will be shown when we consider 
the continuous case.

The last statement of the theorem is a simple consequence of 
our definition of C. Suppose we can encode a source with H{x) — 
C +  a in such a way as to obtain an equivocation Hy{x) =  a — c 
with c positive. Then

H(X) — Hy(x) =  C +  e

with € positive. This contradicts the definition of C as the maxi­
mum of H(x)  — Hy(x).

Actually more has been proved than was stated in the theorem. 
If the average of a set of positive numbers is within c of zero, a 
fraction of at most V  c can have values greater than \/e~. Since 
c is arbitrarily small we can say that almost all the systems are 
arbitrarily close to the ideal.

14. Discussion

The demonstration of Theorem 1 1 , while not a pure existence 
proof, has some of the deficiencies of such proofs. An attempt to 
obtain a good approximation to ideal coding by following the 
method of the proof is generally impractical. In fact, apart from 
some rather trivial cases and certain limiting situations, no ex­
plicit description of a series of approximation to the ideal has 
been found. Probably this is no accident but is related to the



difficulty of giving an explicit construction for a good approxima­
tion to a random sequence.

An approximation to the ideal would have the property that if 
the signal is altered in a reasonable way by the noise, the original 
can still be recovered. In other words the alteration will not in 
general bring it closer to another reasonable signal than the orig­
inal. This is accomplished at the cost of a certain amount of 
redundancy in the coding. The redundancy must be introduced 
in the proper way to combat the particular noise structure in­
volved. However, any redundancy in the source will usually help 
if it is utilized at the receiving point. In particular, if the source 
already has a certain redundancy and no attempt is made to 
eliminate it in matching to the channel, this redundancy will help 
combat noise. For example, in a noiseless telegraph channel one 
could save about 50% in time by proper encoding of the mes­
sages. This is not done and most of the redundancy of English 
remains in the channel symbols. This has the advantage, how­
ever, of allowing considerable noise in the channel. A sizable 
fraction of the letters can be received incorrectly and still recon­
structed by the context. In fact this is probably not a bad approx­
imation to the ideal in many cases, since the statistical structure 
of English is rather involved and the reasonable English se­
quences are not too far (in the sense required for theorem) from 
a random selection.

As in the noiseless case a delay is generally required to ap­
proach the ideal encoding. It now has the additional function of 
allowing a large sample of noise to affect the signal before any 
judgment is made at the receiving point as to the original mes­
sage. Increasing the sample size always sharpens the possible 
statistical assertions.

The content of Theorem 1 1  and its proof can be formulated in 
a somewhat different way which exhibits the connection with the 
noiseless case more clearly. Consider the possible signals of dura­
tion T and suppose a subset of them is selected to be used. Let 
those in the subset all be used with equal probability, and suppose 
the receiver is constructed to select, as the original signal, the 
most probable cause from the subset, when a perturbed signal is 
received. We define N{T,q)  to be the maximum number of sig­



nals we can choose for the subset such that the probability of an 
incorrect interpretation is less than or equal to q.

Theorem 12: Lim = C, where C is the channel ca-r -  00 T 1
parity, provided that q does not equal 0  or 1 .

In other words, no matter how we set our limits of reliability, 
we can distinguish reliably in time T enough messages to corre­
spond to about CT bits, when T is sufficiently large. Theorem 12 
can be compared with the definition of the capacity of a noiseless 
channel given in section 1 .

15. Example of a Discrete Channel and Its Capacity

A simple example of a discrete channel is indicated in Fig. 1 1 . 
There are three possible symbols. The first is never affected by 
noise. The second and third each have probability p of coming 
through undisturbed, and q of being changed into the other of the

Fig. 11. —  Example of a discrete channel.

pair. Let a =  — [p log p +  q log q] and let P, Q and Q be the 
probabilities of using the first, second and third symbols respec­
tively (the last two being equal from consideration of symmetry). 
We have:

H (x) =  —P  log P — 2Q log Q 
Hy(x) =  2  Qa.

We wish to choose P and Q in such a way as to maximize 
H(x)  — Hy(x),  subject to the constraint P +  2Q =  1 . Hence we 
consider



U — — P  log P — 2 Q log Q — 2 Qa +  \ (P +  2 Q) 

dU
dP
dU
dQ

= — 1 — log P +  X =  0 

=  -  2  -  2  log Q -  2a +  2 \ =  0 .

Eliminating X

P  = P +  2
The channel capacity is then 

C =  log

log P  =  log Q +  a 
P = Qea =  QP

Q =P
P +  2

P +  2

Note how this checks the obvious values in the cases p =  1 and 
p =  +  In the first, /3 =  1 and C =  log 3, which is correct since 
the channel is then noiseless with three possible symbols. If p =  
+  P =  2  and C =  log 2 . Here the second and third symbols can­
not be distinguished at all and act together like one symbol. The 
first symbol is used with probability P =  J and the second and 
third together with probability +  This may be distributed be­
tween them in any desired way and still achieve the maximum 
capacity.

For intermediate values of p the channel capacity will lie be­
tween log 2  and log 3. The distinction between the second and 
third symbols conveys some information but not as much as in 
the noiseless case. The first symbol is used somewhat more fre­
quently than the other two because of its freedom from noise.

16. The Channel Capacity in Certain Special Cases

If the noise affects successive channel symbols independently it 
can be described by a set of transition probabilities pa. This is 
the probability, if symbol i is sent, that j will be received. The 
channel capacity is then given by the maximum of

P%pij log 53 PiPij “l~ 53 PiPij log pai,j i i,j



where we vary the Pi subject to XPi =  1. This leads by the 
method of Lagrange to the equations,

E p S)- log — — —  = M s =  1 , 2 , • • • .
jLj  P i P i ji

Multiplying by Ps and summing on $ shows that p

the inverse of p8j (if it exists) be hst so thsLt^2h8tp8j =
8

^Lh.,p,j log p,i — logEPipu -  — c TjK,8, j i 8
Hence:

T , PiPu =  exp [c E fc .,  +  ^Lhslpsi log p.#]t 8 8,]'
or,

Pi = 'll hit exp [c lU h t + H h Btp,j log psj\.t 8 8, J
This is the system of equations for determining the maximizing 

values of Pi, with C to be determined so that XPi =  1 . When this 
is done C will be the channel capacity, and the Pi the proper 
probabilities for the channel symbols to achieve this capacity.

If each input symbol has the same set of probabilities on the 
lines emerging from it, and the same is true of each output sym-

= - C .  Let 
= dt3\ Then:

Fig. 12. —  Examples of discrete channels with the same transition probabilities 
for each input and for each output.

bol, the capacity can be easily calculated. Examples are shown in 
Fig. 12. In such a case Hx(y) is independent of the distribution of



probabilities on the input symbols, and is given by — X Pi log p% 
where the pi are the values of the transition probabilities from 
any input symbol. The channel capacity is

Max [H(y)  — Hx(y) ]
=  Max H(y)  +  2 pi log pi.

The maximum of H(y)  is clearly log m where m is the number of 
output symbols, since it is possible to make them all equally 
probable by making the input symbols equally probable. The 
channel capacity is therefore

C =  log m +  X Pi log Pi.

In Fig. 1 2 a it would be
C =  log 4 — log 2  =  log 2 .

This could be achieved by using only the 1st and 3d symbols. In 
Fig. 1 2 b

C = log 4 -  | log 3 -  {  log 6  

= log 4 — log 3 — \ log 2

= log j  2 |.
In Fig. 12c we have

C = log 3 — {  log 2  — {  log 3 -  {  log 6

= io g ------§------

Suppose the symbols fall into several groups such that the noise 
never causes a symbol in one group to be mistaken for a symbol 
in another group. Let the capacity for the nth group be Cn (in 
bits per second) when we use only the symbols in this group. 
Then it is easily shown that, for best use of the entire set, the 
total probability Pn of all symbols in the nth group should be

P  = — ■-
2 2 c" •

Within a group the probability is distributed just as it would be 
if these were the only symbols being used. The channel capacity is

C =  log 2 2 c».



17. An Example of Efficient Coding

The following example, although somewhat artificial, is a case in 
which exact matching to a noisy channel is possible. There are 
two channel symbols, 0  and 1 , and the noise affects them in blocks 
of seven symbols. A block of seven is either transmitted without 
error, or exactly one symbol of the seven is incorrect. These eight 
possibilities are equally likely. We have

C =  Max [H(y) -  Hx(y)]

=  7  [7  + 1  lo S

= y bits/symbol.

An efficient code, allowing complete correction of errors and 
transmitting at the rate C, is the following (found by a method 
due to R. Hamming):

Let a block of seven symbols be X u X ?, • • • , X 7. Of these 
X 3, X 5, X q and X 7 are message symbols and chosen arbitrarily 
by the source. The other three are redundant and calculated as 
follows:

X 4 is chosen to make a =  X 4 +  X 5 +  X 6 +  X 7 even
X 2“ “ “ “ p =  X 2 +  X 3 +  X 6 +  X 7 “
X ! “ y =  X x +  X 3 +  X 5 +  X 7 “

When a block of seven is received a, and y are calculated and
if even called zero, if odd called one. The binary number a p  y 
then gives the subscript of the Xi  that is incorrect (if 0  there 
was no error) . 10

10 For some further examples of self-correcting codes see M . J. E. Golay, 
“ Notes on Digital Coding,” Proceedings of the Institute of Radio Engineers, 
v. 37, N o . 6, June, 1949, p. 637.



Continuous Information

We now consider the case where the signals or the messages or 
both are continuously variable, in contrast with the discrete 
nature assumed heretofore. To a considerable extent the con­
tinuous case can be obtained through a limiting process from the 
discrete case by dividing the continuum of messages and signals 
into a large but finite number of small regions and calculating 
the various parameters involved on a discrete basis. As the size 
of the regions is decreased these parameters in general approach 
as limits the proper values for the continuous case. There are, 
however, a few new effects that appear and also a general change 
of emphasis in the direction of specialization of the general results 
to particular cases.

We will not attempt, in the continuous case, to obtain our 
results with the greatest generality, or with the extreme rigor of 
pure mathematics, since this would involve a great deal of ab­
stract measure theory and would obscure the main thread of the 
analysis. A preliminary study, however, indicates that the theory 
can be formulated in a completely axiomatic and rigorous manner 
which includes both the continuous and discrete cases and many 
others. The occasional liberties taken with limiting processes in 
the present analysis can be justified in all cases of practical 
interest.

18. Sets and Ensembles of Functions

We shall have to deal in the continuous case with sets of func­



tions and ensembles of functions. A set of functions, as the name 
implies, is merely a class or collection of functions, generally of 
one variable, time. It can be specified by giving an explicit rep­
resentation of the various functions in the set, or implicitly by 
giving a property which functions in the set possess and others 
do not. Some examples are:
1 . The set of functions:

fe(t) =  sin (t +  0).

Each particular value of 0 determines a particular function in 
the set.

2 . The set of all functions of time containing no frequencies over 
W  cycles per second.

3. The set of all functions limited in band to W  and in amplitude 
to A.

4. The set of all English speech signals as functions of time.
An ensemble of functions is a set of functions together with a 

probability measure whereby we may determine the probability 
of a function in the set having certain properties. 1 For example 
with the set,

fe(t) =  sin (t +  6),

we may give a probability distribution for 0, say P(0).  The set 
then becomes an ensemble.

Some further examples of ensembles of functions are:
1 . A finite set of functions fk(t) (k =  1, 2, • • • , n) with the 

probability of fk being p*.
2. A finite dimensional family of functions

/ («i, oi2, • • • , « „ ; £ )

with a probability distribution for the parameters 

P(«i> * * • , a«).
For example we could consider the ensemble defined by

n
, CLnj @1j , 0  5 3 On sin n(oit -J- @n)

» = 1

1 In mathematical terminology the functions belong to a measure space 
whose total measure is unity.



with the amplitudes ai distributed normally and independ­
ently, and the phases Oi distributed uniformly (from 0  to 2ir) 
and independently.

3. The ensemble

f(a<, o
sin 7t(2 Wt — n) 

zn ~ £ n x (2Wt -  n)

with the at normal and independent all with the same standard 
deviation x /A .  This is a representation of “ white” noise, band 
limited to the band from 0  to W  cycles per second and with 
average power N.2

4. Let points be distributed on the t axis according to a Poisson 
distribution. At each selected point the function f ( t)  is placed 
and the different functions added, giving the ensemble

oo
^ / ( 2  +  tk)

k = —oo

where the tk are the points of the Poisson distribution. This 
ensemble can be considered as a type of impulse or shot noise 
where all the impulses are identical.

5. The set of English speech functions with the probability meas­
ure given by the frequency of occurrence in ordinary use.
An ensemble of functions fa(t) is stationary if the same en­

semble results when all functions are shifted any fixed amount 
in time. The ensemble

fe(t) =  sin (t +  0)

is stationary if 0 is distributed uniformly from 0  to 27r. If we 
shift each function by tx we obtain

fe(t +  tx) =  sin (t +  ¿i +  6)
=  sin (t +  <p)

2 This representation can be used as a definition of band limited white noise. 
It has certain advantages in that it involves fewer limiting operations than 
do definitions that have been used in the past. The name “white noise,” 
already firmly intrenched in the literature, is perhaps somewhat unfortu­
nate. In optics white light means either any continuous spectrum as con­
trasted with a point spectrum, or a spectrum which is flat with wavelength 
(which is not the same as a spectrum flat with frequency).



with <p distributed uniformly from 0  to 2 tt. Each function has 
changed but the ensemble as a whole is invariant under the trans­
lation. The other examples given above are also stationary.

An ensemble is ergodic if it is stationary, and there is no 
subset of the functions in the set with a probability different 
from 0  and 1  which is stationary. The ensemble

sin (t +  0)

is ergodic. No subset of these functions of probability ^  0 , 1  is 
transformed into itself under all time translations. On the other 
hand the ensemble

a sin (t +  0)

with a distributed normally and 0 uniform is stationary but not 
ergodic. The subset of these functions with a between 0 and 1, for 
example, is stationary, and has a probability not equal to 0  or 1 .

Of the examples given, 3 and 4 are ergodic, and 5 may perhaps 
be considered so. If an ensemble is ergodic we may say roughly 
that each function in the set is typical of the ensemble. More 
precisely it is known that with an ergodic ensemble an average 
of any statistic over the ensemble is equal (with probability 1 ) 
to an average over all the time translations of a particular func­
tion in the set. 3 Roughly speaking, each function can be expected, 
as time progresses, to go through, with the proper frequency, all 
the convolutions of any of the functions in the set.

Just as we may perform various operations on numbers or 
functions to obtain new numbers or functions, we can perform 
operations on ensembles to obtain new ensembles. Suppose, for 
example, we have an ensemble of functions /«(£) and an operator 
T which gives for each function fa(t) a resulting function ga(t):

ga(t) =  Tfa(t).

3 This is the famous ergodic theorem or rather one aspect of this theorem 
which was proved in somewhat different formulations by Birkhoff, von 
Neumann, and Koopm an, and subsequently generalized by Wiener, Hopf, 
Hurewicz and others. The literature on ergodic theory is quite extensive 
and the reader is referred to the papers of these writers for precise and 
general formulations; e.g., E. Hopf “Ergodentheorie,” Ergebnisse der M ath­
ematic und ihrer Grenzgebiete, v. 5 ; “On Causality Statistics and Proba­
bility,M Journal of Mathematics and Physics, v. X I II , No. 1, 1934; N . 
Wiener “The Ergodic Theorem,” Duke Mathematical Journal, v. 5, 1939.



Probability measure is defined for the set ga(t) by means of that 
for the set /« (0 -  The probability of a certain subset of the ga(t) 
functions is equal to that of the subset of the fa(t) functions 
which produce members of the given subset of g functions under 
the operation T. Physically this corresponds to passing the 
ensemble through some device, for example, a filter, a rectifier 
or a modulator. The output functions of the device form the 
ensemble ga{t).

A device or operator T will be called invariant if shifting the 
input merely shifts the output, i.e., if

ga(t) =  Tfa(t).
implies

ga(t +  ¿1 ) =  Tfa(t +  ¿1 )

for all fa(t) and all ¿1 . It is easily shown (see Appendix 5) that 
if T is invariant and the input ensemble is stationary then the 
output ensemble is stationary. Likewise if the input is ergodic the 
output will also be ergodic.

A filter or a rectifier is invariant under all time translations. 
The operation of modulation is not, since the carrier phase gives 
a certain time structure. However, modulation is invariant under 
all translations which are multiples of the period of the carrier.

Wiener has pointed out the intimate relation between the in­
variance of physical devices under time translations and Fourier 
theory. 4 He has shown, in fact, that, if a device is linear as well 
as invariant Fourier analysis is then the appropriate mathe­
matical tool for dealing with the problem.

An ensemble of functions is the appropriate mathematical 
representation of the messages produced by a continuous source 
(for example, speech), of the signals produced by a transmitter, 
and of the perturbing noise. Communication theory is properly

4 Communication theory is heavily indebted to Wiener for much of its 
basic philosophy and theory. His classic N D R C  report, The Interpolation, 
Extrapolation, and Smoothing oj Stationary Time Series (W iley, 1949), 
contains the first clear-cut formulation of communication theory as a statis­
tical problem, the study of operations on time series. This work, although 
chiefly concerned with the linear prediction and filtering problem, is an 
important collateral reference in connection with the present paper. W e  
may also refer here to Wiener’s Cybernetics (W iley, 1948), dealing with the 
general problems of communication and control.



concerned, as has been emphasized by Wiener, not with opera­
tions on particular functions, but with operations on ensembles 
of functions. A communication system is designed not for a par­
ticular speech function and still less for a sine wave, but for the 
ensemble of speech functions.

19. Band Limited Ensembles of Functions

If a function of time f ( t)  is limited to the band from 0 to W 
cycles per second it is completely determined by giving its ordi­

nates at a series of discrète points spaced seconds apart in the 

manner indicated by the following result. 5

Theorem 13: Let f(t)  contain no frequencies over W . 
Then

In this expansion f (t)  is represented as a sum of orthogonal 
functions. The coefficients X n of the various terms can be con­
sidered as coordinates in an infinite dimensional “ function space.” 
In this space each function corresponds to precisely one point 
and each point to one function.

A function can be considered to be substantially limited to a 
time T if all the ordinates X n outside this interval of time are 
zero. In this case all but 2TW  of the coordinates will be zero. 
Thus functions limited to a band W and duration T correspond 
to points in a space of 2TW  dimensions.

A subset of the functions of band W  and duration T corre­
sponds to a region in this space. For example, the functions 
whose total energy is less than or equal to E correspond to 
points in a 2TW  dimensional sphere with radius r =  y/ 2WE.

An ensemble of functions of limited duration and band will be

5 For a proof of this theorem and further discussion see the author’s paper 
“ Communication in the Presence of Noise” published in the Proceedings oj 
the Institute oj Radio Engineers, v. 37, No. 1, Jan., 1949, pp. 10-21.

where



represented by a probability distribution p(x1) • • • , xn) in the 
corresponding n dimensional space. If the ensemble is not limited 
in time we can consider the 2TW coordinates in a given interval 
T to represent substantially the part of the function in the 
interval T and the probability distribution p(x1} • • • , xn) to 
give the statistical structure of the ensemble for intervals of that 
duration.

20. Entropy of a Continuous Distribution

The entropy of a discrete set of probabilities p1} • • • , pn has 
been defined as:

H = -  ' ll Pi log Pi.

In an analogous manner we define the entropy of a continuous 
distribution with the density distribution function p(x)  by:

/ 00

p(x) log p{x) dx.
-00

With an n dimensional distribution p(x lf , xn) we have 

H = -  f -  • f p ( x  1 • • • xn) log p(x 1, • • • , xn) dxi • • ♦ dxn.

If we have two arguments x and y (which may themselves be 
multidimensional) the joint and conditional entropies of p(x, y) 
are given by

H(x, y) =  - f f  p{x, y) log p(x, y) dx dy

and

Hx(y) =  -  ff p(x> l/) !°g dx dy

Hy{x) =  - f f p ( x , y )  log P(jf(yy -  dx dV

where
p{x) =  f p(x, y) dy 

P(y) = f  V(*, y) dx.

The entropies of continuous distributions have most (but not



all) of the properties of the discrete case. In particular we have 
the following:
1 . If x  is limited to a certain volume v in its space, then H(x)  is

a maximum and equal to log v when p(x)  is constant 
in the volume.

2. With any two variables x, y we have
H( x , y )  < H ( x )  + H ( y )

with equality if (and only if) x and y  are independent, i.e., 
p(xf y) =  p(x) viljy  (apart possibly from a set of points of 
probability zero).

3. Consider a generalized averaging operation of the following 
type:

V'(y) = f a ( x,y) p(x) dx
with

f a ( x , y) dx = j a ( x } y) dy =  1 , a(x, y) >  0 .

Then the entropy of the averaged distribution p'(y)  is equal 
to or greater than that of the original distribution p(x).

4. We have
H(x,  y ) =  H(x)  +  Hx(y) =  H(y)  +  Hy(x)

and
HAy)  < H ( y ) .

5. Let p(x)  be a one-dimensional distribution. The form of p(x)  
giving a maximum entropy subject to the condition that the 
standard deviation of x be fixed at a is Gaussian. To show this 
we must maximize

with
H{x) — — Jp{x)  log p(x) dx 

= Jp(x )x2 dx and 1  =  / p{x) dx

as constraints. This requires, by the calculus of variations, 
maximizing

J [ — p(x)  log p{x)  +  \p(x)x2 +  fxp(x)] dx.



The condition for this is
— 1  — log p (z) +  \x2 +  fx =  0

and consequently (adjusting the constants to satisfy the con­
straints)

p(x) = 1

V 2 Ï  a
g—(x*/2 <r2)̂

Similarly in n dimensions, suppose the second order moments 
of p(x i, • • • , xn) are fixed at A^:

A = j • • JXiXjp(xij • • • , xn) dxi * * • dxn.

Then the maximum entropy occurs (by a similar calculation) 
when p(x ly • • • , xn) is the n dimensional Gaussian distribu­
tion with the second order moments Aij.

6 . The entropy of a one-dimensional Gaussian distribution whose 
standard deviation is a is given by

H (x) =  log V  2ne or.

This is calculated as follows: 
1p(x) =

y/2tt (
e-(x2/2<r2)

log p{x) = log \/2tt a +
2 <r2

H(x)  = — Jp{x)  log p{x) dx

= Jp(x)  log \/2tt a dx +  Jp(x)  ~ ^ r dx

= log y/2ir a +
2 <r2

= log y/2ir a +  log y/~e 

— log y/2^e a .

Similarly the n dimensional Gaussian distribution with asso­
ciated quadratic form ai;- is given by

p(xiy • • • , xn) = (2tt)*/2 exp ( — \ 'LaijX iX j)



and the entropy can be calculated as
H =  log (27rc)n/21 cm |-*

where | ai;- | is the determinant whose elements are ai;*.
7. If x is limited to a half line (p(x) =  0  for x <  0 ) and the first 

moment of x is fixed at a:

a = i
00

p(x)x dx,

then the maximum entropy occurs when

p(x) =  — e_(x/a) a
and is equal to log ea.

8 . There is one important difference between the continuous and 
discrete entropies. In the discrete case the entropy measures in 
an absolute way the randomness of the chance variable. In the 
continuous case the measurement is relative to the coordinate 
system. If we change coordinates the entropy will in general 
change. In fact if we change to coordinates y x • • • yn the new 
entropy is given by

H(y) = J  - Jp(xi •••*») J ( ~ )

log p(x i • • • xn) dyx • • • dyn

where J is the Jacobian of the coordinate transformation.

On expanding the logarithm and changing variables to xx • • • 
xn, we obtain:

H(y)  =  H(x) — j  - • Jp( x i, • * • , xn) log dxi • ■ • dxn.

Thus the new entropy is the old entropy less the expected log­
arithm of the Jacobian. In the continuous case the entropy can 
be considered a measure of randomness relative to an assumed 
standard, namely the coordinate system chosen with each 
small volume element dxi • • • dxn given equal weight. When 
we change the coordinate system the entropy in the new sys­
tem measures the randomness when equal volume elements 
dyi • • • dyn in the new system are given equal weight.

In spite of this dependence on the coordinate system the



entropy concept is as important in the continuous case as the 
discrete case. This is due to the fact that the derived concepts 
of information rate and channel capacity depend on the differ­
ence of two entropies and this difference does not depend on 
the coordinate frame, each of the two terms being changed by 
the same amount.

The entropy of a continuous distribution can be negative. 
The scale of measurements sets an arbitrary zero correspond­
ing to a uniform distribution over a unit volume. A distribu­
tion which is more confined than this has less entropy and will 
be negative. The rates and capacities will, however, always be 
non-negative.

9. A particular case of changing coordinates is the linear trans­
formation

Vi = SaiyXi.i

In this case the Jacobian is simply the determinant | aa |- 1  and 
H(y)  =  H(x)  +  log | aij |.

In the case of a rotation of coordinates {or any measure pre­
serving transformation) J =  1 and H(y)  =  H  (x ).

21. Entropy of an Ensemble of Functions

Consider an ergodic ensemble of functions limited to a certain 
band of width W  cycles per second. Let

p(x1} • • • , xn)

be the density distribution function for amplitudes xx • • • xn at 
n successive sample points. We define the entropy of the ensemble 
per degree of freedom by

H' = -  L i m - JP(xb •••,*»)
log p(xi, • • • , xn) dxi • * * dxn.

We may also define an entropy H per second by dividing, not by 
n, but by the time T in seconds for n samples. Since n =  2 TW,  
H =  2 WH'.



With white thermal noise p is Gaussian and we have

H' =  log \ /  2 ?reN,
H  =  W  log 2ireN.

For a given average power N, white noise has the maximum 
possible entropy. This follows from the maximizing properties of 
the Gaussian distribution noted above.

The entropy for a continuous stochastic process has many 
properties analogous to that for discrete processes. In the discrete 
case the entropy was related to the logarithm of the probability 
of long sequences, and to the number of reasonably probable se­
quences of long length. In the continuous case it is related in a 
similar fashion to the logarithm of the probability density for a 
long series of samples, and the volume of reasonably high proba­
bility in the function space.

More precisely, if we assume p(x ly • • • , xn) continuous in all 
the Xi for all n, then for sufficiently large n

log V _  H ,
n <  €

for all choices of (xly • • • , xn) apart from a set whose total 
probability is less than 8, with 8 and e arbitrarily small. This fol­
lows from the ergodic property if we divide the space into a large 
number of small cells.

The relation of H to volume can be stated as follows: Under 
the same assumptions consider the n dimensional space corre­
sponding to p( x i, • • • , xn). Let Vn(q) be the smallest volume in 
this space which includes in its interior a total probability q. 
Then

n—>00 n = H f

provided q does not equal 0  or 1 .
These results show that for large n there is a rather well-defined 

volume (at least in the logarithmic sense) of high probability, 
and that within this volume the probability density is relatively 
uniform (again in the logarithmic sense).

In the white noise case the distribution function is given by

p(xi, • * * , xn) =  (2 trN)nl2 CX̂  2 N



Since this depends only on Xx? the surfaces of equal probability 
density are spheres and the entire distribution has spherical sym­
metry. The region of high probability is a sphere of radius

. As n —» oo the probability of being outside a sphere of

radius V n (N +  c) approaches zero however small e and — times

the logarithm of the volume of the sphere approaches log y/2ireN.
In the continuous case it is convenient to work not with the 

entropy H of an ensemble but with a derived quantity which we 
will call the entropy power. This is defined as the power in a 
white noise limited to the same band as the original ensemble 
and having the same entropy. In other words if H ' is the entropy 
of an ensemble its entropy power is

In the geometrical picture this amounts to measuring the high 
probability volume by the squared radius of a sphere having the 
same volume. Since white noise has the maximum entropy for a 
given power, the entropy power of any noise is less than or equal 
to its actual power.

22. Entropy Loss in Linear Filters

Theorem 14: If an ensemble having an entropy H x per degree 
of freedom in band W is passed through a filter with character- 
istic Y (/) the output ensemble has an entropy

The operation of the filter is essentially a linear transformation of 
coordinates. If we think of the different frequency components as 
the original coordinate system, the new frequency components 
are merely the old ones multiplied by factors. The coordinate 
transformation matrix is thus essentially diagonalized in terms of 
these coordinates. The Jacobian of the transformation is (for n 
sine and n cosine components)

1

+  YV)\*df.



where the f% are equally spaced through the band IF. This be­
comes in the limit

exp — ¿ lo g  | Y(f) \*df.

Since J is constant its average value is the same quantity and 
applying the theorem on the change of entropy with a change of
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coordinates, the result follows. We may also phrase it in terms 
of the entropy power. Thus if the entropy power of the first 
ensemble is N x that of the second is

The final entropy power is the initial entropy power multiplied 
by the geometric mean gain of the filter. If the gain is measured 
in db, then the output entropy power will be increased by the 
arithmetic mean db gain over W.

In Table I the entropy fcower loss has been calculated (and 
also expressed in db) for a number of ideal gain characteristics. 
The impulsive responses of these filters are also given for 
W =  2?r, with phase assumed to be 0.

The entropy loss for many other cases can be obtained from

these results. For example the entropy power factor ~  for the

first case also applies to any gain characteristic obtained from 
1 -  to by a measure preserving transformation of the <o axis. In 
particular a linearly increasing gain G (<o) =  w, or a “ saw tooth” 
characteristic between 0 and 1  have the same entropy loss. The
reciprocal gain has the reciprocal factor. Thus -i- has the factor e2.

Raising the gain to any power raises the factor to this power.

23. Entropy of the Sum of Two Ensembles

If we have two ensembles of functions fa(t) and gp(t) we can 
form a new ensemble by “ addition.” Suppose the first ensemble 
has the probability density function p(xu • • • , xn) and the 
second q(x 1} • • • , xn). Then the density function for the sum is 
given by the convolution: •

Physically this corresponds to adding the noises or signals repre­
sented by the original ensembles of functions.

The following result is derived in Appendix 6 .
Theorem 15: Let the average power of two ensembles be A i

• q(xi -  2/i, ‘ ‘ I xn — yn) dyi dy2 ' • - dyn.



and N2 and let their entropy powers be N x and N2. Then the 
entropy power of the sum, N3, is bounded by

n 1 + n 2 < n 3 < n 1 + n 2.

White Gaussian noise has the peculiar property that it can 
absorb any other noise or signal ensemble which may be added to 
it with a resultant entropy power approximately equal to the sum 
of the white noise power and the signal power (measured from 
the average signal value, which is normally zero), provided the 
signal power is small, in a certain sense, compared to the noise.

Consider the function space associated with these ensembles 
having n dimensions. The white noise corresponds to the spherical 
Gaussian distribution in this space. The signal ensemble corre­
sponds to another probability distribution, not necessarily Gaus­
sian or spherical. Let the second moments of this distribution 
about its center of gravity be a^. That is, if p(xu • • • , xn) is 
the density distribution function

dij = J • • jp{Xi — ai) (Xj — af) dxi • • • dxn

where the ai are the coordinates of the center of gravity. Now ai;- 
is a positive definite quadratic form, and we can rotate our 
coordinate system to align it with the principal directions of this 
form, aij is then reduced to diagonal form bn. We require that 
each bn be small compared to N, the squared radius of the 
spherical distribution.

In this case the convolution of the noise and signal produce 
approximately a Gaussian distribution whose corresponding 
quadratic form is

N + b H.

The entropy power of this distribution is
[ILiN +  ba ) ] " *

or approximately
= [ (N)n +  S 6 «(JVr)~“ 1]1/~

=  N +  —  2 6 «.n

The last term is the signal power, while the first is the noise 
power.



IV
The Continuous Channel

24. The Capacity of a Continuous Channel

In a continuous channel the input or transmitted signals will be 
continuous functions of time f ( t)  belonging to a certain set, and 
the output or received signals will be perturbed versions of these. 
We will consider only the case where both transmitted and re­
ceived signals are limited to a certain band W.  They can then be 
specified, for a time T , by 2 TW  numbers, and their statistical 
structure by finite dimensional distribution functions. Thus the 
statistics of the transmitted signal will be determined by

and those of the noise by the conditional probability distribution

The rate of transmission of information for a continuous chan­
nel is defined in a way analogous to that for a discrete channel, 
namely

where H(x)  is the entropy of the input and Hy(x) the equivoca­
tion. The channel capacity C is defined as the maximum of R 
when we vary the input over all possible ensembles. This means 
that in a finite dimensional approximation we must vary P(x)  =  
P( x i, • • • , xn) and maximize

P( x i, • * • , xn) =  P(x)

Pxu ) Xn(yi) * * J Vn) P, {y) .

R =  H(x)  — Hy(x)

dx dy.



This can be written

i l F ( x ' v) 108 - p & P ( y ) - dxd>l

using the fact that J j P ( x } y) log P(x)  dxdy = JP(x)  log P(x) dx. 

The channel capacity is thus expressed as follows:

c  =  ¥J2 4 ~ / / p (* ’ y) log - p & p { y ) - dx dy-

It is obvious in this form that R and C are independent of the 
coordinate system since the numerator and denominator in log 

P (x y}T̂ / x x will be multiplied by the same factors when x and y P(x )P(y )
are transformed in any one-to-one way. This integral expression 
for C is more general than H(x)  — Hy(x). Properly interpreted 
(see Appendix 7) it will always exist while H(x)  — Hy(x) may 
assume an indeterminate form oo — oo in some cases. This occurs, 
for example, if x is limited to a surface of fewer dimensions than 
n in its n dimensional approximation.

If the logarithmic base used in computing H(x)  and Hy(x) is 
two then C is the maximum number of binary digits that can be 
sent per second over the channel with arbitrarily small equivoca­
tion, just as in the discrete case. This can be seen physically by 
dividing the space of signals into a large number of small cells, 
sufficiently small so that the probability density Px(y) of signal 
x being perturbed to point y is substantially constant over a cell 
(either of x or y) .  If the cells are considered as distinct points 
the situation is essentially the same as a discrete channel and the 
proofs used there will apply. But it is clear physically that this 
quantizing of the volume into individual points cannot in any 
practical situation alter the final answer significantly, provided 
the regions are sufficiently small. Thus the capacity will be the 
limit of the capacities for the discrete subdivisions and this is 
just the continuous capacity defined above.

On the mathematical side it can be shown first (see Appendix 7) 
that if u is the message, x is the signal, y is the received signal 
(perturbed by noise) and v the recovered message then

H(x)  -  Hy(x) >  H(u)  — Hv(u)



regardless of what operations are performed on u to obtain x or 
on y to obtain v. Thus no matter how we encode the binary digits 
to obtain the signal, or how we decode the received signal to 
recover the message, the discrete rate for the binary digits does 
not exceed the channel capacity we have defined. On the other 
hand, it is possible under very general conditions to find a coding 
system for transmitting binary digits at the rate C with as small 
an equivocation or frequency of errors as desired. This is true, 
for example, if, when we take a finite dimensional approximating 
space for the signal functions, P(x, y)  is continuous in both x and 
y except at a set of points of probability zero.

An important special case occurs when the noise is added to 
the signal and is independent of it (in the probability sense). 
Then Px(y) is a function only of the (vector) difference n =  
(V ~  x )>

Px(y) =  Q(y -  x)

and we can assign a definite entropy to the noise (independent 
of the statistics of the signal), namely the entropy of the dis­
tribution Q{n).  This entropy will be denoted by H(n) .

Theorem 16: If the signal and noise are independent and the 
received signal is the sum of the transmitted signal and the noise 
then the rate of transmission is

R =  H(y)  — H( n ) ,
i.e., the entropy of the received signal less the entropy of the 
noise. The channel capacity is

C =  Max H(y)  -  H( n ) .
P(x)

We have, since y =  x +  n:

H{ x , y )  =  H(x,n) .

Expanding the left side and using the fact that x and n are 
independent

H(y)  + H y{x) = H ( x )  +  H(n).
Hence

R =  H(x)  -  Hv{x) =  H(y)  -  H(n).

Since H{n)  is independent of P(x) ,  maximizing R requires 
maximizing H(y) ,  the entropy of the received signal. If there are



certain constraints on the ensemble of transmitted signals, the 
entropy of the received signal must be maximized subject to these 
constraints.

25. Channel Capacity with an Average Power Limitation

A simple application of Theorem 16 occurs when the noise is a 
white thermal noise and the transmitted signals are limited to a 
certain average power P. Then the received signals have an aver­
age power P +  N  where N  is the average noise power. The max­
imum entropy for the received signals occurs when they also form 
a white noise ensemble since this is the greatest possible entropy 
for a power P +  N  and can be obtained by a suitable choice of 
the ensemble of transmitted signals, namely if they form a white 
noise ensemble of power P. The entropy (per second) of the 
received ensemble is then

H(y)  =  IT log 2 tre(P +  N),  

and the noise entropy is
H(n) — W  log 2 treN.

The channel capacity is

C =  H{y)  -  H(n) =  W  log P +  N . 

Summarizing we have the following:
Theorem 17: The capacity of a channel of band W perturbed 

by white thermal noise of power N when the average transmitter 
power is limited to P is given by

C = W  log P +  N
N

This means that by sufficiently involved encoding systems
P +  Nwe can transmit binary digits at the rate W  log2 ----- ^ ----- bits

per second, with arbitrarily small frequency of errors. It is not 
possible to transmit at a higher rate by any encoding system 
without a definite positive frequency of errors.

To approximate this limiting rate of transmission the trans­
mitted signals must approximate, in statistical properties, a white



noise. 6 A system which approaches the ideal rate may be de­
scribed as follows: Let M  — 2s samples of white noise be con­
structed each of duration T. These are assigned binary numbers 
from 0  to (M  — 1 ). At the transmitter the message sequences are 
broken up into groups of s and for each group the corresponding 
noise sample is transmitted as the signal. At the receiver the M  
samples are known and the actual received signal (perturbed by 
noise) is compared with each of them. The sample which has the 
least R.M.S. discrepancy from the received signal is chosen as 
the transmitted signal and the corresponding binary number re­
constructed. This process amounts to choosing the most probable 
(a posteriori) signal. The number M  of noise samples used will 
depend on the tolerable frequency e of errors, but for almost all 
selections of samples we have

Lim Lim
«—>0 oo

log M { 6 , T) 
T = W  log P +  N 

N 9
so that no matter how small e is chosen, we can, by taking T

P +  Nsufficiently large, transmit as near as we wish to TW  log — —  

binary digits in the time T .
P +  NFormulas similar to C = W  lo g ----- ^ ----- for the white noise

case have been developed independently by several other 
writers, although with somewhat different interpretations. We 
may mention the work of N. Wiener , 7 W. G. Tuller , 8 and H. 
Sullivan in this connection.

In the case of an arbitrary perturbing noise (not necessarily 
white thermal noise) it does not appear that the maximizing 
problem involved in determining the channel capacity C can be 
solved explicitly. However, upper and lower bounds can be set 
for C in terms of the average noise power N  and the noise entropy 
power N i. These bounds are sufficiently close together in most

6 This and other properties of the white noise case are discussed from the 
geometrical point of view in “Communication in the Presence of Noise,” 
loc. cit.
7 Cybernetics, loc. cit.
8 “Theoretical Limitations on the Rate of Transmission of Inform ation/7
Proceedings oj the Institute oj Radio Engineers, v. 37, No. 5, M ay, 1949, 
pp. 468-78.



practical cases to furnish a satisfactory solution to the problem.
Theorem 18: The capacity of a channel of band W perturbed 

by an arbitrary noise is bounded by the inequalities

where

W  log P +  N  i 
Ni

P +  N< C < W  log ^  --

P =  average transmitter power 
N  — average noise power 
N i — entropy power of the noise.

Here again the average power of the perturbed signals will be 
P +  N. The maximum entropy for this power would occur if the 
received signal were white noise and would be W  log 2 tre(P +  N).  
It may not be possible to achieve this; i.e., there may not be any 
ensemble of transmitted signals which, added to the perturbing 
noise, produce a white thermal noise at the receiver, but at least 
this sets an upper bound to H ( y ). We have, therefore

C =  Max H(y)  -  H(n)
<  W  log 2 tte(P +  N) — W  log 2weNx.

This is the upper limit given in the theorem. The lower limit can 
be obtained by considering the rate if we make the transmitted 
signal a white noise, of power P. In this case the entropy power 
of the received signal must be at least as great as that of a white 
noise of power P +  N x since we have shown in Theorem 15 that 
the entropy power of the sum of two ensembles is greater than or 
equal to the sum of the individual entropy powers. Hence

and
Max H(y)  >  W  log 2tre(P +  N i)

C >  W  log 2 tre(P +  Ni) -  W log 2ireNi

= W  log P +  N i 
N  i

As P increases, the upper and lower bounds in Theorem 18 ap­
proach each other, so we have as an asymptotic rate

W  log r P +  N
Ni

If the noise is itself white, N =  Ni and the result reduces to the 
formula proved previously:



C -  W  log ( l  4- - £ - )

If the noise is Gaussian but with a spectrum which is not nec­
essarily flat, N i is the geometric mean of the noise power over the 
various frequencies in the band W. Thus

N i = exp log N(J) df

where N(f)  is the noise power at frequency /.
Theorem 19: If we set the capacity for a given transmitter 

power P equal to

C = W  log P +  N  
Nr

v

then rj is monotonic decreasing as P increases and approaches 0  

as a limit.
Suppose that for a given power Pi the channel capacity is

W  log Pi +  N  — rji 
Ni

This means that the best signal distribution, say p(x) ,  when 
added to the noise distribution q(x),  gives a received distribution 
r(y)  whose entropy power is (Pi +  N — yx). Let us increase the 
power to Pi +  AP by adding a white noise of power AP to the 
signal. The entropy of the received signal is now at least

H(y)  = W  log 2tt6 (P i +  N -  Vl +  AP)

by application of the theorem on the minimum entropy power of 
a sum. Hence, since we can attain the H indicated, the entropy of 
the maximizing distribution must be at least as great and y must 
be monotonic decreasing. To show that y —» 0  as P oo consider 
a signal which is a white noise with a large P. Whatever the per­
turbing noise, the received signal will be approximately a white 
noise, if P is sufficiently large, in the sense of having an entropy 
power approaching P +  N. 26

26. The Channel Capacity with a Peak Power Limitation

In some applications the transmitter is limited not by the average



power output but by the peak instantaneous power. The problem 
of calculating the channel capacity is then that of maximizing 
(by variation of the ensemble of transmitted symbols)

H ( y ) - H ( n )

subject to the constraint that all the functions f(t) in the en­
semble be less than or equal to \/S , say, for all t. A constraint 
of this type does not work out as well mathematically as the 
average power limitation. The most we have obtained for this

Scase is a lower bound valid for all an “ asymptotic”  upper

bound ^valid for large and an asymptotic value of C for

N small.

Theorem 20: The channel capacity C for a band W perturbed 
by white thermal noise of power N is bounded by

c >  W  log S_ 
N  ’

where S is the peak allowed transmitter power.

large

C >  W  log
—  S +  N  
™ - ( 1  +  *)N

where e is arbitrarily small. As — — > 0 (and provided the band W  

starts at 0 )

C/W  log ( l + - | r ) - » l -

We wish to maximize the entropy of the received signal. If 
S-jy- is large this will occur very nearly when we maximize the

entropy of the transmitted ensemble.
The asymptotic upper bound is obtained by relaxing the condi­

tions on the ensemble. Let us suppose that the power is limited 
to S not at every instant of time, but only at the sample points. 
The maximum entropy of the transmitted ensemble under these



weakened conditions is certainly greater than or equal to that 
under the original conditions. This altered problem can be solved 
easily. The maximum entropy occurs if the different samples are 
independent and have a distribution function which is constant 
from — y/~S to +  y/S. The entropy can be calculated as

W  log 4S.

The received signal will then have an entropy less than 
W  log (4S +  2-ireN) (1 +  c)

Swith € —► 0  as — > oo and the channel capacity is obtained by

subtracting the entropy of the white noise, W  log 2weN :

W  log (45 +  2ireN) ( 1  +  e) -  W  log (2ireN)

—  S +  N
= W  log --------  (1 +  €).

This is the desired upper bound to the channel capacity.
To obtain a lower bound consider the same ensemble of func­

tions. Let these functions be passed through an ideal filter with a 
triangular transfer characteristic. The gain is to be unity at fre­
quency 0  and decline linearly down to gain 0  at frequency W. 
We first show that the output functions of the filter have a peak 
power limitation S at all times (not just the sample points). First

we note that a pulse S1̂  going into the filter produces ¿ttW t
1 sin2 7rWt
2 ( irWt)2

in the output. This function is never negative. The input function 
(in the general case) can be thought of as the sum of a series of 
shifted functions

sin 2irWt 
a 2 vW t

where a, the amplitude of the sample, is not greater than yJ~S. 
Hence the output is the sum of shifted functions of the non­
negative form above with the same coefficients. These functions 
being non-negative, the greatest positive value for any t is ob­



tained when all the coefficients a have their maximum positive 
values, i.e., V  S . In this case the input function was a constant 
of amplitude \/S~ and since the filter has unit gain for D.C., the 
output is the same. Hence the output ensemble has a peak 
power S.

The entropy of the output ensemble can be calculated from that 
of the input ensemble by using the theorem dealing with such a 
situation. The output entropy is equal to the input entropy plus 
the geometrical mean gain of the filter:

rw rw /  w  — f  \ 2
l  log G ’ d f - 1  l o g  ( J V L ) ' V -

Hence the output entropy is

W  log 4S -  2W  = W log 

and the channel capacity is greater than

W log 2
7re3

_S_ 
N  *

We now wish to show that, for small (peak signal power

over average white noise power), the channel capacity is ap­
proximately

C  -  W  l o g  ( l  +  - f ) .

More precisely C/W  log y l  +  1 as Since the

average signal power P  is less than or equal to the peak S, it 

follows that for all N

C <  W  log ( l  +  - £ - )  <  W log ( l  +  - j^ ) .

Therefore, if we can find an ensemble of functions such that

they correspond to a rate nearly W  log ^ 1  +  and are

limited to band W  and peak S the result will be proved. Consider 
the ensemble of functions of the following type. A series of t 
samples have the same value, either + \ /S  or —\/S , then 
the next t samples have the same value, etc. The value for a



series is chosen at random, probability \ for + y/ S  and \ for 
—\AS . If this ensemble be passed through a filter with triangu­
lar gain characteristic (unit gain at D.C.), the output is peak 
limited to ±  S. Furthermore the average power is nearly S and 
can be made to approach this by taking t sufficiently large. 
The entropy of the sum of this and the thermal noise can be 
found by applying the theorem on the sum of a noise and a small 
signal. This theorem will apply if

is sufficiently small. This can be insured by taking small

enough (after t is chosen). The entropy power will be S + N  to 
as close an approximation as desired, and hence the rate of 
transmission as near as we wish to



V
The Rate for a Continuous Source

27. Fidelity Evaluation Functions

In the case of a discrete source of information we were able to 
determine a definite rate of generating information, namely the 
entropy of the underlying stochastic process. With a continuous 
source the situation is considerably more involved. In the first 
place a continuously variable quantity can assume an infinite 
number of values and requires, therefore, an infinite number of 
binary digits for exact specification. This means that to transmit 
the output of a continuous source with exact recovery at the re­
ceiving point requires, in general, a channel of infinite capacity 
(in bits per second). Since, ordinarily, channels have a certain 
amount of noise, and therefore a finite capacity, exact transmis­
sion is impossible.

This, however, evades the real issue. Practically, we are not 
interested in exact transmission when we have a continuous 
source, but only in transmission to within a certain tolerance. The 
question is, can we assign a definite rate to a continuous source 
when we require only a certain fidelity of recovery, measured in 
a suitable way. Of course, as the fidelity requirements are in­
creased the rate will increase. It will be shown that we can, in 
very general cases, define such a rate, having the property that 
it is possible, by properly encoding the information, to transmit it 
over a channel whose capacity is equal to the rate in question, 
and satisfy the fidelity requirements. A channel of smaller ca­
pacity is insufficient.



It is first necessary to give a general mathematical formulation 
of the idea of fidelity of transmission. Consider the set of mes­
sages of a long duration, say T seconds. The source is described 
by giving the probability density, P(x) ,  in the associated space, 
that the source will select the message in question. A given com­
munication system is described (from the external point of view) 
by giving the conditional probability Px(y) that if message x is 
produced by the source the recovered message at the receiving 
point will be y. The system as a whole (including source and 
transmission system) is described by the probability function 
P(x ,y )  of having message x and final output y. If this function 
is known, the complete characteristics of the system from the 
point of view of fidelity &re known. Any evaluation of fidelity 
must correspond mathematically to an operation applied to 
P(x, y).  This operation must at least have the properties of a 
simple ordering of systems; i.e., it must be possible to say of two 
systems represented by Pi(x, y)  and P2(x,y)  that, according to 
our fidelity criterion, either ( 1 ) the first has higher fidelity, 
(2 ) the second has higher fidelity, or (3) they have equal fidelity. 
This means that a criterion of fidelity can be represented by a 
numerically valued evaluation function:

v( P( x , y ) )

whose argument ranges over possible probability functions 
P( x f y).  The function v(P(x,  y) )  orders communication systems 
according to fidelity, and for convenience we take lower values of 
v to correspond to “ higher fidelity.”

We will now show that under very general and reasonable as­
sumptions the function v{P(x,  y) )  can be written in a seemingly 
much more specialized form, namely as an average of a function 
p(x, y) over the set of possible values of x and y:

v(P(x, y)) =  f f p ( x ,  y) p(x, y ) dx dy.

To obtain this we need only assume (1) that the source and sys­
tem are ergodic so that a very long sample will be, with proba­
bility nearly 1 , typical of the ensemble, and (2 ) that the evalua­
tion is “ reasonable” in the sense that it is possible, by observing 
a typical input and output xx and y lf to form a tentative evalua­



tion on the basis of these samples; and if these samples are in­
creased in duration the tentative evaluation will, with probability 
1 , approach the exact evaluation based on a full knowledge of 
P(x , y ) .  Let the tentative evaluation be p(x, y).  Then the func­
tion p(x, y) approaches (as T —>oo) a constant for almost all 
(x , y) which are in the high probability region corresponding to 
the system:

p(*,y)  - * v ( P ( x , y ) )  

and we may also write

p(x, y ) - * f f  p (x > y) p(x > y ) dx dv
since

f  f p ( x ,  y) dx dy = 1 .

This establishes the desired result.
The function p(xf y) has the general nature of a “ distance” 

between x and y 9 It measures how undesirable it is (according to 
our fidelity criterion) to receive y when x is transmitted. The 
general result given above can be restated as follows: Any reas­
onable evaluation can be represented as an average of a distance 
function over the set of messages and recovered messages x and y 
weighted according to the probability P(x, y) of getting the pair 
in question, provided the duration T of the messages be taken 
sufficiently large.

The following are simple examples of evaluation functions:
1 . R.M.S. criterion.

v =  (x(t) -  y ( t ) ) 2

In this very commonly used measure of fidelity the distance 
function p{x,y)  is (apart from a constant factor) the square 
of the ordinary euclidean distance between the points x and y 
in the associated function space.

p (*, y) =  -jr j f W )  -  yW  dt
2 . Frequency weighted R.M.S. criterion. More generally one can 

apply different weights to the different frequency components

9 I t  is n o t  a ‘ ‘ m e tr ic ” in  th e strict sense , h o w e v e r , since in general it  does  
n o t s a tis fy  e ith er  p(x,y) = p(y,x) or p(x,y) + p(y, z) >  p(x,z).



before using an R.M.S. measure of fidelity. This is equivalent 
to passing the difference x(t) — y(t)  through a shaping filter 
and then determining the average power in the output. Thus let

e(t) =  x(t)  -  y(t)
and

/(0  = f  e(r)k(t — r) dr
J —co

then

p(®, y) =  - j r j f /(0* dt.
3. Absolute error criterion.

1  rT ip(x, y) = ~Yj  I X(t) -  y(t) I dt

4. The structure of the ear and brain determine implicitly a num­
ber of evaluations, appropriate in the case of speech or music 
transmission. There is, for example, an “ intelligibility” crite­
rion in which p(x, y) is equal to the relative frequency of in­
correctly interpreted words when message x(t)  is received as 
y{t) .  Although we cannot give an explicit representation of 
p(x, y) in these cases it could, in principle, be determined by 
sufficient experimentation. Some of its properties follow from 
well-known experimental results in hearing, e.g., the ear is 
relatively insensitive to phase and the sensitivity to amplitude 
and frequency is roughly logarithmic.

5. The discrete case can be considered as a specialization in which 
we have tacitly assumed an evaluation based on the frequency 
of errors. The function p(x,y)  is then defined as the number 
of symbols in the sequence y  differing from the corresponding 
symbols in x divided by the total number of symbols in x.

28. The Rate for a Source Relative to a Fidelity Evaluation

We are now in a position to define a rate of generating informa­
tion for a continuous source. We are given P(x)  for the source 
and an evaluation v determined by a distance function p(x,y)  
which will be assumed continuous in both x and y. With a par­
ticular system P( x , y ) the quality is measured by



v

Furthermore the rate of flow of binary digits corresponding to 
P( x , y )  is

We define the rate R i of generating information for a given qual­
ity vx of reproduction to be the minimum of R when we keep v 
fixed at t>i and vary Px(y ). That is:

This means that we consider, in effect, all the communication 
systems that might be used and that transmit with the required 
fidelity. The rate of transmission in bits per second is calculated 
for each one and we choose that having the least rate. This latter 
rate is the rate we assign the source for the fidelity in question.

The justification of this definition lies in the following result:
Theorem 21: If a source has a rate i?i for a valuation vx it is 

possible to encode the output of the source and transmit it over a 
channel of capacity C with fidelity as near vx as desired provided 
i?i <  C. This is not possible if R 1 >  C.

The last statement in the theorem follows immediately from 
the definition of R x and previous results. If it were not true we 
could transmit more than C bits per second over a channel of 
capacity C. The first part of the theorem is proved by a method 
analogous to that used for Theorem 11. We may, in the first place, 
divide the (z, y) space into a large number of small cells and 
represent the situation as a discrete case. This will not change the 
evaluation function by more than an arbitrarily small amount 
(when the cells are very small) because of the continuity assumed 
for p(x, y) .  Suppose that Pi(x, y) is the particular system which 
minimizes the rate and gives R x. We choose from the high proba­
bility y ’s a set at random containing

Ri =  Min j I P ( x ,  y) log

subject to the constraint:

2 («i+*)r



members where e —» 0 as T —> oo. With large T each chosen point 
will be connected by high probability lines (as in Fig. 10) to a set 
of z ’s. A calculation similar to that used in proving Theorem 1 1  

shows that with large T almost all z ’s are covered by the fans 
from the chosen y points for almost all choices of the y ’s. The 
communication system to be used operates as follows: The se­
lected points are assigned binary numbers. When a message x is 
originated it will (with probability approaching 1  as T —> oo) lie 
within at least one of the fans. The corresponding binary number 
is transmitted (or one of them chosen arbitrarily if there are sev­
eral) over the channel by suitable coding means to give a small 
probability of error. Since R ± <  C this is possible. At the receiv­
ing point the corresponding y is reconstructed and used as the 
recovered message.

The evaluation v[ for this system can be made arbitrarily close 
to vx by taking T sufficiently large. This is due to the feet that for 
each long sample of message x(t)  and recovered message y( t )  the 
evaluation approaches v1 (with probability 1 ).

It is interesting to note that, in this system, the noise in the 
recovered message is actually produced by a kind of general 
quantizing at the transmitter and is not produced by the noise in 
the channel. It is more or less analogous to the quantizing noise 
in PCM.

29. The Calculation of Rates

The definition of the rate is similar in many respects to the defi­
nition of channel capacity. In the former

B =  ?8 ? / / P (* ' v) 108 H x ’ p f , )  i x  dy
with P(x)  and vi = J  J P ( x } y)p(x, y) dx dy fixed. In the latter

c  = ¥<*>xffP(x>y) log p&pCvT dx dy
with Px(y) fixed and possibly one or more other constraints (e.g., 
an average power limitation) of the form K  =  f f  P( x , y) \{x, y) 
dx dy.

A partial solution of the general maximizing problem for de­



termining the rate of a source can be given. Using Lagrange’s 
method we consider

¡ J [ p ( x ,  y ) log p ^ p f y ) -  + M P ( x ,  y ) p ( x ,  y)+ v ( x ) P ( x , y ) J d x  d y .

The variational equation (when we take the first variation on 
P(x,  y) )  leads to

P y( x ) = B { x )  e~xpix’y)

where X is determined to give the required fidelity and B{x)  is 
chosen to satisfy

e -\ p (x .y )  d x 1 .

This shows that, with best encoding, the conditional probability 
of a certain cause for various received y , Py(x) will decline ex­
ponentially with the distance function p{x, y) between the x and 
y in question.

In the special case where the distance function p(x> y)  depends 
only on the (vector) difference between x and y ,

we have
p(x, y) =  P(x -  y)

e-\p{x-y) dx =  1 .

Hence B (z) is constant, say a, and

P y(x) =  ae~^p{x~y).

Unfortunately these formal solutions are difficult to evaluate in 
particular cases and seem to be of little value. In fact, the actual 
calculation of rates has been carried out in only a few very simple 
cases.

If the distance function p(x, y) is the mean square discrepancy 
between x and y and the message ensemble is white noise, the 
rate can be determined. In that case we have

R =  Min [H(x)  -  Hy{x) ] =  H(x)  -  Max Hy{x)

with N  =  (x — y ) 2. But the Max Hy(x) occurs when y — x is a



white noise, and is equal to W x log 2neN where W x is the band­
width of the message ensemble. Therefore

R = Wi log 2weQ — Wi log 2tteN

= Wi log

where Q is the average message power. This proves the following:
Theorem 22: The rate for a white noise source of power Q and 

band W x relative to an R.M.S. measure of fidelity is

R =  Wi log

where N is the allowed mean square error between original and 
recovered messages.

More generally with any message source we can obtain inequal­
ities bounding the rate relative to a mean square error criterion.

Theorem 23: The rate for any source of band W x is bounded by 

W x l o g - ^ < R <  W x log

where Q is the average power of the source, Qx its entropy power 
and N the allowed mean square error.

The lower bound follows from the fact that the Max Hy(x) for 
a given (x — y ) 2 =  N  occurs in th.e white noise case. The upper 
bound results if we place the points (used in the proof of Theorem 
2 1 ) not in the best way but at random in a sphere of radius
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Appendix 1. The Growth of a Number of Blocks of Symbols 
with a Finite State Condition

Let Ni(L)  be the number of blocks of symbols of length L end­
ing in state i. Then we have

Nj(L)  =  -  blf)is

where b\j, b\jy • • • , h™ are the length of the symbols which may 
be chosen in state i and lead to state j. These are linear differ­
ence equations and the behavior as L  —» oo must be of the type

Nj =  A jW L.

Substituting in the difference equation

A , W L  =  l L A i W L- iVi, S
or

A j  = is

K E i f - 1“  -  b^Ai =  o.t s
For this to be possible the determinant

D ( W )  =  | ati | =  1 2 1 7 - * “  -  Sn |
o

must vanish and this determines W, which is, of course, the 
largest real root of D =  0.

The quantity C is then given by

C =  Lim
L—>00

log XAjWL 
L = log W

and we also note that the same growth properties result if we 
require that all blocks start in the same (arbitrarily chosen) state.

Appendix 2. Derivation of H =  ~  X p i log p i

Let H  =  A(n).  From condition (3) we can

decompose a choice from sm equally likely possibilities into a 
series of m choices each from s equally likely possibilities and 
obtain

A (sw) =  m A{s).



Similarly
A( tn) =  n A{t) .

We can choose n arbitrarily large and find an m to satisfy 
sm < t n <  sim+1).

Thus, taking logarithms and dividing by n log s,

m ^  log t 
n — log $

. m . 1< ------- ------- or~  n n
m
n

log t 
log s <  €

where e is arbitrarily small. Now from the monotonic property of
A(n),

A(sw) <  A( tn) <  ¿ ( s w+1) 
m A(s)  <  nA(t) <  (m +  1 ) A(s).

Hence, dividing by wA(s),

m . A (t) . m . 1 m
—  <  A: \ ' < ------- ------- or —n A(s) n n n

A(t)
A(s) <  €

A(t)
A(s)

log t
log s <  2 e A(t) =  — K  log t

where K  must be positive to satisfy (2).
Now suppose we have a choice from n possibilities with com-

n *measurable probabilities pi =  ^ 7  where the n» are integers. We

can break down a choice from %Ui possibilities into a choice from 
n possibilities with probabilities p1} • • • , pn and then, if the ith 
was chosen, a choice from n* with equal probabilities. Using con­
dition 3  again, we equate the total choice from Srii as computed 
by two methods

K  log Xni =  H (ply • • • , pn) +  KX Pi log ni.
Hence

H  =  K[2pi log 2 ni — 2pt log Ui]

= -  KZpi log =  -  KZpi  log Pi.

If the pi are incommeasurable, they may be approximated by 
rationals and the same expression must hold by our continuity 
assumption. Thus the expression holds in general. The choice of



coefficient K  is a matter of convenience and amounts to the choice 
of a unit of measure.

Appendix 3. Theorems on Ergodic Sources

We assume the source to be ergodic so that the strong law of large 
numbers can be applied. Thus the number of times a given path 
Pa in the network is traversed in a long sequence of length N is 
about proportional to the probability of being at i, say Pi, and 
then choosing this path, PiPijN. If N is large enough the proba­
bility of percentage error =t 8  in this is less than e so that for all 
but a set of small probability the actual numbers lie within the 
limits

(PiPn =±= $)N.

Hence nearly all sequences have a probability p given by

V = n p%‘™±S)N 

and is limited by

=  2 (P iVii ±  Ô) log Vii 
or

log V
N -  2 Pipa log pa <  v-

This proves Theorem 3.
Theorem 4 follows immediately from this on calculating upper 

and lower bounds for n(q)  basfcd on the possible range of values 
of p in Theorem 3.

In the mixed (not ergodic) case if
.L  =  2  PiLi

and the entropies of the components are H i >  H2 >  • • • > # „  
we have the

Theorem: Lim ^  = a decreasing step function,
8 — 1 8

<p(q) = H, in the interval <  q <  a*.



To prove theorems 5 and 6  first note that FN is monotonic de­
creasing because increasing N  adds a subscript to a conditional 
entropy. A simple substitution for pBi(Sj) in the definition of FN 
shows that

Fn =  N G n -  (N — 1) GN-i

and summing this for all N  gives Gn =  2  Fn. Hence Gn

>  Fn and Gn monotonic decreasing. Also they must approach 
the same limit. By using Theorem 3 we see that Lim Gn =  H.

Appendix 4. Maximizing the Rate for a System of Constraints

Suppose we have a set of constraints on sequences of symbols 
that is of the finite state type and can be represented therefore 
by a linear graph, as in Fig. 2 . Let l\p be the lengths of the vari­
ous symbols that can occur in passing from state i to state j. 
What distribution of probabilities Pi for the different states and 
p\f for choosing symbol s in state i and going to state j maxi­
mizes the rate of generating information under these constraints? 
The constraints define a discrete channel and the maximum rate 
must be less than or equal to the capacity C of this channel, 
since if all blocks of large length were equally likely, this rate 
would result, and if possible this would be best. We will show 
that this rate can be achieved by proper choice of the Pi and p\*\ 
The rate in question is

-  J lP iP if log Pi?

Let

S ' T> (s) ] ( s) Lmmd L iPij lij

(s) _Pij — Bj_
Bi TT-'i0

where the Bi satisfy the equations

Bi = H b }w - 1«.
J:,8

This homogeneous system has a non-vanishing solution since W  
is such that the determinant of the coefficients is zero:



£  w - v  -  I = 0 .

The pf f  defined thus are satisfactory transition probabilities for 
in the first place,

Bi w-
Bi_
Bi 1

so that the sum of the probabilities from any particular junction 
point is unity. Furthermore they are non-negative as can be seen 
from a consideration of the quantities Ai given in Appendix 1 . 
The Ai are necessarily non-negative and the Bi satisfy a similar 
system of equations but with i and j interchanged. This amounts 
to reversing the orientation on the lines of the graph.

Substituting the assumed values of pW in the general equation 
for the rate we obtain

ZPiPi? log -fj- W -V

ZPiPifki

log W ZPipl?l$ -  ZPjpl? log B, +  2 PipV  log Bj

zPiPiM?
= log W  =  C.

Hence the rate with this set of transition probabilities is C and 
since this rate could never be exceeded this is the maximum.

Appendix 5

Let Si be any measurable subset of the g ensemble, and S2 the 
subset of the /  ensemble which gives Si under the operation T. 
Then

Si =  TS2.

Let Hx be the operator which shifts all functions in a set by the 
time A. Then

t fxSi = H*TS2 = TH*S2



since T is invariant and therefore commutes with H\ Hence if 
m[S]  is the probability measure of the set S

where the second equality is by definition of measure in the g 
space, the third since the /  ensemble is stationary, and the last 
by definition of g measure again. This shows that the g ensemble 
is stationary.

To prove that the ergodic property is preserved under invariant 
operations, let Si be a subset of the g ensemble which is invariant 
under i / x, and let S2 be the set of all functions /  which transform 
into Si. Then

for all A with ra[S2] ^  0, 1 . This contradiction shows that Si does 
not exist.

Appendix 6

The upper bound, N3 <  Ni +  N2, is due to the fact that the 
maximum possible entropy for a power N i +  N2 occurs when we 
have a white noise of this power. In this case the entropy power is 
N x+ N 2.

To obtain the lower bound, suppose we have two distributions 
in n dimensions p(xi)  and q(xi) with entropy powers iVi and N 2. 
What form should p and q have to minimize the entropy power 
N3 of their convolution r(Xi) :

m[HxSi] =  m[TH*S2] =  m[HxS2] 
=  m[S2] =  m[Si]

The entropy H3 of r is given by



We wish to minimize this subject to the constraints 

Hi =  — Jp(xi) log p(xi) dxi 

H2 = — Jq(Xi) log q(xi) dx{.

We consider then

U = — J[r(x) log r(x) +  \p(x) log p(x) +  uq(%) log q(x)] dx

&U =  — f [ [ l  +  log r(x)] 8r(x) +  X [1 +  log p(x)] 8p(x)
+  /x[l +  log q(x) 5?0*0]] dx.

If v{x)  is varied at a particular argument x% =  si} the variation 
in r(x) is

8r(:r) =  q(Xi —
and

8U =  — Jq(Xi — Si) log r(Xi) dxi — X log p(Si) =  0

and similarly when q is varied. Hence the conditions for a mini­
mum are

Jq(Xi -  Si) log r(Xi) =  -  X log p(Si)

Jp(Xi -  Si) log r(Xi) = -  m log q(Si).

If we multiply the first by p(si) and the second by ^(si) and 
integrate with respect to s we obtain

H3 =  - X  H,
H 3 =  -  fxH2

or solving for X and ju, and replacing in the equations

Hi J  q(Xi — Si) log r(Xi) dxi =  -  Hz log p(si)

H2Jp(xi — Si) log r(xi) dxi = — Hz log p(si).

Now suppose p(Xi) and q(xi) are normal

I Ai- \n/2
P ( x d  = 2̂7r)n/2 exP — i  2 A i j X i X j  

I B |n/2
q (X i )  = (2^)n/2~ exP “   ̂ Z B i j X i X j .



Then r(xi) will also be normal with quadratic form Cij. If the 
inverses of these forms are an, bij, ci;- then

Cij  =  a i j  +  bi j .

We wish to show that these functions satisfy the minimizing con­
ditions if and only if aij =  Kbij and thus give the minimum H3 
under the constraints. First we have

7ï 1log r(xi) = ~ Y  log I Cij I -  \ hCijXiXj 

y ç(.Xî Si) log t(xt) =  2  log 2 .̂ I ^o I 5 2C'ijStSj 2 2 Cîjbîj.

This should equal
H,

ITT [ i r  log 27 I A,i I ~ * 24*iS.s/]
Hiwhich requires An =  TT Cij.nz

H 1In this case An = „  

identities.

Bn and both equations reduce to

Appendix 7

The following will indicate a more general and more rigorous 
approach to the central definitions of communication theory. 
Consider a probability measure space whose elements are ordered 
pairs (x, y ) . The variables x , y are to be identified as the possible 
transmitted and received signals of some long duration T. Let us 
call the set of all points whose x belongs to a subset Si of x points 
the strip over Si, and similarly the set whose y belong to S2 the 
strip over S2. We divide x and y into a collection of non-over- 
lapping measurable subsets X { and Yi approximate to the rate 
of transmission R by

R = _i— J2 p ( X  Y ) logRl T i P (Xt) log P(Xi)P(Yi)
where

P{Xi)  is the probability measure of the strip over Xj  
P(Yi)  is the probability measure of the strip over Yi



P ( X iy Yi) is the probability measure of the intersection of the 
strips.
A further subdivision can never decrease R x. For let X x be 
divided into X x =  X[  +  X"  and let

Then in the sum we have replaced (for the X ly Yx intersection)

It is easily shown that with the limitation we have on by c, d, e,

and consequently the sum is increased. Thus the various possible 
subdivisions form a directed set, with R monotonic increasing 
with refinement of the subdivision. We may define R unambig­
uously as the least upper bound for the R x and write it

This integral, understood in the above sense, includes both the 
continuous and discrete cases and of course many others which 
cannot be represented in either-form. It is trivial in this formu­
lation that if x and u are in one-to-one correspondence, the rate 
from u to y is equal to that from x to y. If v is any function of y 
(not necessarily with an inverse) then the rate from x to y  is 
greater than or equal to that from x to v since, in the calculation 
of the approximations, the subdivisions of y are essentially a 
finer subdivision of those for v. More generally if y  and v are 
related not functionally but statistically, i.e., we have a prob­
ability measure space (y yv ) y then R(x,v) <  R (xyy).  This means 
that any operation applied to the received signal, even though it 
involves statistical elements, does not increase R .

Another notion which should be defined precisely in an ab-

P(Yi)  =  a 
P(X[)  = b 

P{X [ )  = c

P ( ï i )  =  b +  c 
P (X [y Yi) = d 

P(X'l9 Yi) = 6

P ( X ly Yi) = d +  6.

{d +  e) l0g a (6 T  c) by d log I T  +  * l0g I T

r d +  e "I. 
L b +  c Jb +  c J ~  bd ce



stract formulation of the theory is that of “ dimension rate,”  
that is the average number of dimensions required per second 
to specify a member of an ensemble. In the band limited case 
2W  numbers per second are sufficient. A general definition can 
be framed as follows. Let f a(t) be an ensemble of functions and 
let pr[fa(t), //j(0 ] be a metric measuring the “ distance”  from f a 
to / 0  over the time T (for example the R.M.S. discrepancy over 
this interval). Let N(e , 5, T) be the least number of elem ents/ 
which can be chosen such that all elements of the ensemble 
apart from a set of measure 8 are within the distance e of at 
least one of those chosen. Thus we are covering the space to 
within e apart from a set of small measure 8. We define the 
dimension rate X for the ensemble by the triple limit

X = Lim Lim Lim5—>0 e—>0 00
log N (6, 8} T) 

T log €

This is a generalization of the measure type definitions of dimen­
sion in topology, and agrees with the intuitive dimension rate for 
simple ensembles where the desired result is obvious.


